研究论文

中温SOFC密封玻璃热稳定性研究

  • 彭练 ,
  • 朱庆山 ,
  • 谢朝晖 ,
  • 黄文来
展开
  • 1. 中国科学院过程工程研究所多相反应重点实验室, 北京, 100080;
    2. 中国科学院研究生院, 北京, 100049

收稿日期: 1900-01-01

  修回日期: 1900-01-01

  网络出版日期: 2006-07-20

Thermal Stability Investigation of a Newly Developed Sealing Glass as IT-SOFC Sealant

  • PENG Lian ,
  • ZHU Qing-Shan ,
  • XIE Zhao-Hui ,
  • HUANG Wen-Lai
Expand
  • 1. Multiphase Reaction Lab, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, China;
    2. Graduate School of the Chinese Academy of Sciences, Beijing 100049, China

Received date: 1900-01-01

  Revised date: 1900-01-01

  Online published: 2006-07-20

摘要

研究了一种热稳定性好的中温固体氧化物燃料电池密封玻璃. 研究表明, 此密封玻璃的热膨胀系数(室温~631℃)为9.8×10-6/K, 与8YSZ电解质的热膨胀系数10.0×10-6/K(室温~631℃)接近, 并且在700℃热处理300h后, 该密封玻璃的热膨胀系数几乎没有变化. 粘度实验表明, 玻璃在700℃下具有足够的刚性, 适合于运行温度在700℃左右SOFC的密封. 化学相容性的研究显示, 在700℃下与8YSZ反应300h后没有发现显著的界面反应.

本文引用格式

彭练 , 朱庆山 , 谢朝晖 , 黄文来 . 中温SOFC密封玻璃热稳定性研究[J]. 无机材料学报, 2006 , 21(4) : 867 -872 . DOI: 10.3724/SP.J.1077.2006.00867

Abstract

A sealing glass, based on the SiO2-B2O3-BaO-La2O3-ZrO2-Y2O3 system, was developed for intermediate temperature solid oxide fuel cells (ITSOFCs). The coefficient of thermal expansion (CTE) of the glass is 9.8×10-6/K (RT~631℃), very close to that of 8YSZ electrolyte. The glass shows a very good thermal stability, even after heat-treatment at 700℃ for 300h, little change in CTE detected. The investigations also reveal that the glass is chemically compatible with 8YSZ electrolyte and no obvious interfacial reaction can be observed after the glass contacting with 8YSZ at 700℃ for 300h.

参考文献

1 Yang Z G, Stevenson J W, Meinhardt K D. Solid State Ionics, 2003, 160: 213-225.
2 Schwickert T, Sievering R, Geasee P, et al. Materialwiss Werkst, 2002, 33: 363-366.
3 Loehman R E, Dumm H P, Hofer H. Ceramic Engineering and Science Proceedings, 2002, 23 (3): 699-710.
4 Weil K S, Coyle C A, Hardy J S, et al. Fuel Cells Bulletin, 2004, 5: 11-16.
5 Bram M, Reckers S, Drinovac P, et al. Electrochemical Society Proceedings, 2003, 7: 888-897.
6 Ley K L, Krumpelt M, Kumar R, et al. Journal of Materials Research, 1996, 11 (6): 1489-1493.
7 Eichler K, Solow G, Otschik P, et al. Journal of the European Ceramic Society, 1999, 19: 1101-1104.
8 Sohn S B, Choi S Y, Kim G H, et al. Journal of American Ceramic Society, 2004, 87 (2): 254-260.
9 郑锐, 等(ZHENG Rui, et al). 无机材料学报(Journal of Inorganic Materials),
2004, 19(1): 37-42.
10 Sohn S B, Choi S Y, Kim G H, et al. Journal of Non-Crystalline solids, 2002, 297: 103-112.
11 Zheng R, Wang S R, Nie H W, et al. Journal of Power Sources, 2004, 128: 165-172.
12 Tuller H L, Schoonman J, Riess l. Oxygen Ion and Mixed Conductors and their Technological Applications. Netherlands: Kluwer Academic Publishers, 2000. 389-397.
13 Taniguchi S, Kadowaki M, Yasuo T, et al. Journal of Power Sources, 2000, 90: 163-169.
14 Lahl N, Singheiser L, Hilpert K, et al. Electrochemical Society Proceedings, 1999, 99 (19): 1057-1066.
15 Lahl N, Singh K, Singheisier L, et al. Journal of Materials Science, 2000, 35: 3089-3096.
16 Larsen P H, James P F. Journal of Materials Science, 1998, 34: 2499-2507.
17 朱庆山, 彭练, 黄文来, 谢朝晖. 一种固体氧化物燃料电池密封策略及密封玻璃. 中国发明专利, 02124834.6, 2005.
文章导航

/