研究论文

超硬纳米多层膜致硬机理研究

  • 杜会静 ,
  • 田永君
展开
  • 1. 燕山大学理学院, 秦皇岛 066004;
    2. 燕山大学材料学院,
    秦皇岛 066004

收稿日期: 2005-07-11

  修回日期: 2005-09-12

  网络出版日期: 2006-07-20

Hardening Mechanism for Nano-multilayer Films

  • DU Hui-Jing ,
  • TIAN Yong-Jun
Expand
  • 1. College of Science, Yanshan University, Qinhuangdao 066004, China;
    2. College of Material Science and Engineering, Yanshan
    University, Qinhuangdao 066004, China

Received date: 2005-07-11

  Revised date: 2005-09-12

  Online published: 2006-07-20

摘要

本文综述了近年来纳米多层膜界面微结构及超硬效应的研究进展, 表明纳米多层膜硬化的主要机制和位错的运动相关, 晶格错配引起的交变应变场对硬化起次要作用, 模量差异致硬起主要作
用. 指出了超硬纳米多层膜研究所存在的问题以及未来的发展方
向.

本文引用格式

杜会静 , 田永君 . 超硬纳米多层膜致硬机理研究[J]. 无机材料学报, 2006 , 21(4) : 769 -775 . DOI: 10.3724/SP.J.1077.2006.00769

Abstract

The study of the hardening mechanism for the nano-multilayer films is the foundation for the preparation of those films. Several different models were proposed to interpret the super-hard effect in the nano-multilayer films, though they cannot interpret all the phenomena in those films. The progress of the research on the superhardness effect in the nano-multilayer films was reviewed.
It shows that all the mechanisms are related to the
movement of the dislocation. The difference of the elastic modulus between the two materials plays the important role for the superhadness effect in the nano-multilayer films, while the alternated strain field plays the less important role. The developmental directions and the problems for the nano-multilayer films were also discussed.

参考文献

1 Yang W M C, Tsakalakos T, Hilliard J E. J. Appl. Phys., 1977, 48(2): 876-879.
2 Helmersson J, Todorova S, Barnett S A, et al. J.
Appl. Phys., 1987, 62(2): 841-844.
3 Shinn M, Hultman L, Barnett S A, et al. J. Mate.
Res., 1992, 7(4): 901-911.
4 Chu X, Barnett S A, Wong M S, et al. Surf. Coat.
Technol., 1993, 57: 13-17.
5 Alan F, Jankowski, et al. J. App. Phys., 1992, 71:
1782-1789.
6 Cammarata R C, Sieradzki K. Physics Review Letters,
1989, 62: 2005-2008.
7 李戈扬, 韩增虎, 田家万, 等. 稀有金属材料与工程, 2003,
32(1): 2-4.
8 张惠娟, 袁家栋, 许辉, 等. 电子显微学报, 2004, 23(4):
374.
9 Helmersson U, Todorova S, Barnett S A, et al. J. App.
Phys., 1987, 62(2): 481-484.
10 Mirkarimi P B, Barnett S A, Hubbard K M, et al.
Mater. Res., 1994, 9(6): 1456-1461.
11 Shinn M, Barnett S A. App. Phys. Lett., 1994, 64
(1): 61-67.
12 Koehler J S. Phys. Rev. B, 1970, 2: 547-551.
13 鼓志坚, 齐龙浩, 刘大鹏, 等, 材料科学与工程学报, 2003,
21(1): 110-115.
14 劳技军, 孔明, 张惠娟, 等, 物理学报, 2004, 53(6):
1962-1966.
15 Li D, Lin X W, Cheng S C. Appl. Phys. Lett., 1996,
68: 1211-1216.
16 Wu M L, Lin X W, David V P, et al. J. Vac. Sci.
Technol. A, 1997, 15: 946-952.
17 Veprek S. J. Vac. Sci. Technol. A, 1999, 17(5):
2401-2420.
18 Anderson P M, Foecke T, Hazzledine P M. MRS Bull.,
1999, 24(2): 27-34.
19 劳技军, 胡晓萍, 虞晓江, 等, 物理学报, 2003, 53(9):
2259-2263.
20 Veprek S, et al. Surf. Coat. Technol., 2000, 133-
134: 152-159.
21 Martin P J, Bendavid A. Surf. Coat. Technol., 2002,
163-164: 245-250.
22 Liu Z J. Acta Mater., 2004, 52: 729-736.
23 Engstrom C, Birch J, Hultman L, et al. J. Vac.
Technol., 1999, A17: 2920-2927.
24 Liu Y, Singh P, Poole K, et al. J. Vac. Technol.,
1997, B15: 1990-1994.
25 Schneider J M, Sproul W D, Sproul A A, et al. J.
Vac. Sci. Technol., 1997, A15(3): 1084-1089.

文章导航

/