研究论文

钛酸纳米管的制备及 TEM表征

  • 黄琮 ,
  • 张开坚 ,
  • 党志 ,
  • 李新军
展开
  • 1. 华南理工大学环境科学与工程学院, 广州 510640;
    2. 重庆大学经济与工商管理学院, 重庆 400044;
    3. 攀钢集团攀枝花钢铁研究院, 攀枝花 617000;
    4. 中科院广州能源研究所, 广州 510640

收稿日期: 2005-05-23

  修回日期: 2005-07-11

  网络出版日期: 2006-05-20

Preparation of Trititanate Nanotube and TEM Observation

  • HUANG Cong ,
  • ZHANG Kai-Jian ,
  • DANG Zhi ,
  • Li Xin-Jun
Expand
  • 1. College of Environmental Science and Engineering, South China University
    of Technology, Guangzhou 510640, China;
    2. Economy, Industry and Business Management College, Chongqing University, Chongqing 400044, China;
    3. Panzhihua Iron & Steel Research Institute, Panzhihua I & S Ltd. Co, Panzhihua 617000, China;
    4. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China

Received date: 2005-05-23

  Revised date: 2005-07-11

  Online published: 2006-05-20

摘要

采用水热合成法以金红石型纳米TiO2粉为原料制备钛酸纳米管, 考察了搅拌、酸洗及焙烧温度对纳米管的形成和结构的影响, 并通过TEM观察了产物的形貌、结构. 结果显示: 持续搅拌能促进原料粉末的定向生长, 有利于形成钛酸纳米片;酸洗是纳米管的形成阶段; 300℃是纳米管转变为长棒状晶柱的临界温度. 实验表明以优化的水热合成法制得的纳米管形貌均一, 长度超过1μm, 钛酸纳米管长径比为125:1.

本文引用格式

黄琮 , 张开坚 , 党志 , 李新军 . 钛酸纳米管的制备及 TEM表征[J]. 无机材料学报, 2006 , 21(3) : 547 -552 . DOI: 10.3724/SP.J.1077.2006.00547

Abstract

Trititanate nanotubes were synthesized from rutile TiO2 via hydrothermal process. The influences of process parameters such as stirring, acid leaching and calcination temperature on formation and structure of nanotubes were observed by TEM. The results show that continuous stirring could improve the directional growth of TiO2 particles and formation of trititanate nanoflakes, and nanotubes are formed in the acid leaching process. It also reveals that 300℃ is the critical transformation temperature between nanotubes and long-stick crystalline column. The nanotubes synthesized under optimal condition are uniform and longer than 1μm, and the ratio of length to diameter is 125:1.

参考文献

1 Iijima S. Nature, 1991, 354 (6348): 56-58.
2 Tenne R, Margulis L, Genut M, et al. Nature, 1992, 360(6403): 444-446.
3 Hoyer P. Langmuir, 1996, 12: 1411-1413.
4 Kasuga T, Hiramatsu M, Hoson A, et al. Langmuir, 1998, 14: 3160-3163.
5 Du G H, Chen Q, Che R C, et al. Applied Physics Letters, 2001, 79(22): 3702-3704.
6 Chen Q, Du G H, Peng L M. Journal of Chinese Electron Microscopy Society, 2002, 21(6): 265-269.
7 Zhang J W, Guo X Y, Jin Z S, et al. Chinese Chemical Letters, 2003, 14(4): 419.
8 Bavykin D V, Parmon V N, Lapkin A A, et al. Journal of Materials Chemistry, 2004, 14: 3370-3377.
9 李晓红, 张校刚, 力虎林. 高等学校化学学报, 2001, 22(1): 130--132.
10 Akita T, Okumura M, Tanaka K, et al. Surface and Interface Analysis, 2005, 37: 265-269.
11 王保玉,郭新勇, 张治军. 等. 高等学校化学学报, 2003, 24(10): 1838-1841.
12 Yang J J, Jin Z S, Wang X D, et al. Dalton Transactions, 2003, (20): 3898-3901.
13 Suzuki Y, Yoshikawa S. Journal of Materials Research, 2004, 19(4): 982-985.
14 Nakahira A, Kato W, Tamai M, et al. Journal of Materials Science, 2004, 39: 4239-4245.
15 张青红, 高濂, 郑珊, 等.化学学报, 2002, 60(8): 1439-1444.
16 Chen Q, Zhou W Z, Du G H, et al. Advanced Materials, 2002, 14 (17): 1208-1211.
17 Zhang J W, Guo X Y, Jin Z S, et al. Chinese Chemical Letters, 2003, 14 (4): 419.
18 Ma R Z, Bando Y, Sasaki T. Chemical Physics Letters, 2003, 380: 577.
19 Tsai C C, Teng H. Chemical materials, 2004, 16: 4352-4358.
20 Zhang S, Peng L M, Chen Q, et al. Physical Review Letters, 2003, 91(25): 2561031-2561034.
21 Zhang M, Jin Z S, Zhang J W, et al. Journal of Molecular catalysis A: Chemical, 2004, 217: 203-210.
文章导航

/