研究论文

纳米Cu2O/TiO2 异质结薄膜电极的制备和表征

  • 唐一文 ,
  • 陈志钢 ,
  • 张丽莎 ,
  • 贾志勇 ,
  • 张新
展开
  • 1. 华中师范大学纳米科技研究院, 武汉430079;
    2. 复旦大学先进材料实验室, 上海 200433

收稿日期: 2005-03-07

  修回日期: 2005-05-09

  网络出版日期: 2006-03-20

Preparation and Characterization of Nanocrystalline Cu2O/TiO2 Heterojunction Film Electrode

  • TANG Yi-Wen ,
  • CHEN Zhi-Gang ,
  • ZHANG Li-Sha ,
  • JIA Zhi-Yong ,
  • ZHANG Xin
Expand
  • 1. Institute of Nano-science and Technology, Central China Normal University,
    Wuhan 430079, China;
    2. Laboratory of Advanced Materials, Fudan University, Shanghai 200433,China

Received date: 2005-03-07

  Revised date: 2005-05-09

  Online published: 2006-03-20

摘要

通过阴极还原在纳米TiO2膜上电沉积Cu2O, 获得了p-Cu2O/n- TiO2异质结电极. 研究了沉积温度对Cu2O膜厚、纯度和形貌的影响, 制备出纯度较高、粒径为40~50nm的Cu2O薄膜. 纳米Cu2O膜在200℃烧结后透光性最好, 禁带宽度为2.06eV. 光电化学测试表明纳米p-Cu2O/n-TiO2异质结电极呈现较强的n-型光电流响应并且能够提高光电转换效率.

本文引用格式

唐一文 , 陈志钢 , 张丽莎 , 贾志勇 , 张新 . 纳米Cu2O/TiO2 异质结薄膜电极的制备和表征[J]. 无机材料学报, 2006 , 21(2) : 453 -458 . DOI: 10.3724/SP.J.1077.2006.00453

Abstract

TiO2 film; heterojunction electrode; photoelectrochemistryThis paper introduced the electrochemical deposition of Cu2O thin films on TiO2 films by cathodic reduction to form p-Cu2O/n-TiO2 heterostructure electrode. The effects of bath temperature on film thickness, purity and morphology of Cu2O films were studied. Pure spherically shaped Cu2O grains with 40~50nm diameter were obtained. It is found that annealing at 200℃ can improve the spectral transmittance of the Cu2O film and the film has a band gap of 2.06eV. The measurements of photoelectrochemical behavior of the nanocrystalline p-Cu2O/n-TiO2 heterostructure electrode show that such heterostructure electrode produces strong n-type spectral response and can improve the photoelectron conversion efficiency.

参考文献

1 de Jongh P E, Vanmaekelbergh D, Kelly J J. J. Electrochem. Soc., 2000, 147: 486-489.
2 陈志钢, 唐一文, 贾志杰, 等(Chen Zhi-Gang, et al). 无机材料学报(Journal of Inorganic
Materials), 2005, 20(2): 367-372.
3 Georgieva V, Risov M. Sol. Energy Mater. Sol. Cells, 2002, 73: 67-73.
4 Hara M, Kondo T, Komoda M, et al. Chem. Commum., 1998: 357-358.
5 Yoon K H, Choi W J, Kang D H. Thin solid films, 2000, 372: 250-256.
6 Mahalingam T, Chitra J S P, Ravi G, et al. Surf. Coat. Tech., 2003, 168: 111-114.
7 Musa A O, Akomolafe T, Carter M J, Sol. Energy Mater. Sol. Cells, 1998, 51: 305-316.
8 Trivich U, Wang E Y, Komp R J, et al. Proc.13th IEEE Photovoltaic Spec. Conf.,
Washington, IEEE, New York, 1978.174-183.
9 Nazeeruddin M K, Kay A, Rodicio I, et al. J. Am. Chem. Soc., 1993, 115: 6382-6390.
10 Kalyanasundaram K, Gratzel M. Coordin. Chem. Rev., 1998, 77: 347-414.
11 Vogel R, Hoyer P, Weller H. J. Phys. Chem., 1994, 98: 3183-3188.
文章导航

/