研究论文

溶液法制备AgBi2I7薄膜及其光电探测性能研究

  • 胡盈 ,
  • 李自清 ,
  • 方晓生
展开
  • 1.材料科学系, 聚合物分子工程国家重点实验室, 复旦大学, 上海 200433
    2.光电研究院, 上海市智能光电与感知前沿科学研究基地, 复旦大学, 上海 200433
胡 盈(1999-), 女, 硕士研究生. E-mail: huying@fudan.edu.cn
李自清, 青年副研究员. E-mail: lzq@fudan.edu.cn;
方晓生, 教授. E-mail: xshfang@fudan.edu.cn

收稿日期: 2022-09-27

  修回日期: 2022-11-29

  网络出版日期: 2022-12-27

基金资助

国家自然科学基金(12061131009);国家自然科学基金(51872050);国家自然科学基金(62204047)

Solution-prepared AgBi2I7 Thin Films and Their Photodetecting Properties

  • HU Ying ,
  • LI Ziqing ,
  • FANG Xiaosheng
Expand
  • 1. State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai 200433, China
    2. Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, China
HU Ying (1999-), female, Master candidate. E-mail: huying@fudan.edu.cn
LI Ziqing, associate research fellow. E-mail: lzq@fudan.edu.cn;
FANG Xiaosheng, professor. E-mail: xshfang@fudan.edu.cn

Received date: 2022-09-27

  Revised date: 2022-11-29

  Online published: 2022-12-27

Supported by

National Natural Science Foundation of China(12061131009);National Natural Science Foundation of China(51872050);National Natural Science Foundation of China(62204047)

摘要

AgBi2I7薄膜具有良好的光电特性和环境稳定性, 是构筑异质结紫外光电探测器的有力候选材料之一。本研究采用溶液法制备AgBi2I7薄膜, 通过优化前驱体溶液的浓度和溶剂类型(正丁胺和二甲基亚砜)等工艺参数, 研究了其光电探测性能。采用最优方案在宽带隙的GaN上制备AgBi2I7薄膜, 构建AgBi2I7/GaN异质结。该异质结对UVA射线具有良好的选择性探测(探测半峰宽约30 nm)。在3 V偏压和350 nm紫外光照射下, 器件开关比超过5个数量级, 达到27.51 A/W的高响应度和1.53×1014 Jones的高探测率。研究表明溶液法制备的AgBi2I7薄膜有望应用于构建高性能的异质结紫外光电探测器。

本文引用格式

胡盈 , 李自清 , 方晓生 . 溶液法制备AgBi2I7薄膜及其光电探测性能研究[J]. 无机材料学报, 2023 , 38(9) : 1055 -1061 . DOI: 10.15541/jim20220569

Abstract

AgBi2I7 thin film is one of the important candidates for constructing heterojunction ultraviolet photodetectors, due to their great optoelectronic properties and environmental stability. In this study, AgBi2I7 thin films were prepared by solution method and their photodetecting properties were investigated. By optimizing technological parameters such as concentration of the precursor solution and type of solvent (n-butylamine and DMSO), their photodetecting performance were investigated. AgBi2I7 thin films were fabricated on wide-bandgap GaN by optimal scheme to construct an AgBi2I7/GaN heterojunction. The heterojunction has a great selective detection of UVA-ray of which full width at half maximum is about 30 nm. Under 3 V bias and 350 nm UV irradiation, the On/Off ratio of the device exceeds 5 orders of magnitude, achieving a high responsivity of 27.51 A/W and a high detection rate of 1.53×1014 Jones. Therefore, the present research indicates that AgBi2I7 thin films prepared by solution method are promising to be applied to construct high-performance heterojunction ultraviolet photodetectors.

参考文献

[1] MENG G, YE Y, FAN L, et al. Recent progress of halide perovskite radiation detector materials. J. Inorg. Mater., 2020, 35(11): 1203.
[2] LI Z Q, Li, Z L, Shi Z F, et al. Facet-dependent, fast response, and broadband photodetector based on highly stable all-inorganic CsCu2I3 single crystal with 1D electronic structure. Adv. Funct. Mater., 2020, 30(28): 2002634.
[3] WANG X, ZHANG T, LOU Y, et al. All-inorganic lead-free perovskites for optoelectronic applications. Mater. Chem. Front., 2019, 3(3): 365.
[4] BU H, HE C, XU Y, et al. Emerging new-generation detecting and sensing of metal halide perovskites. Adv. Electron. Mater., 2022, 8(5): 2101204.
[5] PERVEEN A, HUSSAIN S, XU Y, et al. Solution processed and highly efficient UV-photodetector based on CsPbBr3 perovskite- polymer composite film. J. Photochem. Photobiol. A, 2022, 426: 113764.
[6] ZHU T, SHEN L, ZHANG D, et al. Solution-processed ternary perovskite-organic broadband photodetectors with ultrahigh detectivity. ACS Appl. Mater. Interfaces, 2022, 14(16): 18744.
[7] YANG X, ZHONG S, WANG K, et al. Study of resistive switching and biodegradability in ultralow power memory device based on all-inorganic Ag/AgBi2I7/ITO structure. Adv. Mater. Interfaces, 2022, 9(17): 2200237.
[8] TURKEVYCH I, KAZAOUI S, ITO E, et al. Photovoltaic rudorffites: lead-free silver bismuth halides alternative to hybrid lead halide perovskites. ChemSusChem, 2017, 10(19): 3754.
[9] LI Z Q, LIU X Y, ZUO C L, et al. Supersaturation-controlled growth of monolithically integrated lead-free halide perovskite single-crystalline thin film for high-sensitivity photodetectors. Adv. Mater., 2021, 33(41): 2103010.
[10] WANG J, LI Y, MA L, et al. Air-stabilized lead-free hexagonal Cs3Bi2I9 nanocrystals for ultrahigh-performance optical detection. Adv. Funct. Mater., 2022, 32(30): 2203072.
[11] PREMKUMAR S, LIU D, ZHANG Y, et al. Stable lead-free silver bismuth iodide perovskite quantum dots for UV photodetection. ACS Appl. Nano Mater., 2020, 3(9): 9141.
[12] KIM Y, YANG Z, JAIN A, et al. Pure cubic-phase hybrid iodobismuthates AgBi2I7 for thin-film photovoltaics. Angew. Chem. Int. Ed., 2016, 55(33): 9586.
[13] KULKARNI A, JENA A K, IKEGAMI M, et al. Performance enhancement of AgBi2I7 solar cells by modulating a solvent- mediated adduct and tuning remnant BiI3 in one-step crystallization. Chem. Comm., 2019, 55(28): 4031.
[14] IYODA F, NISHIKUBO R, WAKAMIYA A, et al. Ag-(Bi, Sb, In, Ga)-I solar cells: impacts of elemental composition and additives on the charge carrier dynamics and crystal structures. ACS Appl. Energy Mater., 2020, 3(9): 8224.
[15] SEO Y, HA S R, YOON S, et al. Dynamic casting in combination with ramped annealing process for implementation of inverted planar Ag3BiI6 rudorffite solar cells. J. Power Sources, 2020, 453: 227903.
[16] SHAO Z P, LE MERCIER T, MADEC M B, et al. AgBi2I7 layers with controlled surface morphology for solar cells with improved charge collection. Mater. Lett., 2018, 221: 135.
[17] JIN S Y, DONG-WON K. Optimization of bismuth-based inorganic thin films for eco-friend, Pb-free perovskite solar cells. J. Electr. Eng. Technol., 2018, 31(2): 117.
[18] SHADABROO M S, ABDIZADEH H, SHABANI M, et al. Solvent engineering for controlled crystallization and growth of all-inorganic Pb-free rudorffite absorbers of perovskite solar cells. Inorg. Chem., 2021, 60(15): 11110.
[19] ABDUL AMIR H A A, FAKHRI M A, ALWAHIB A A, et al. Synthesis of gallium nitride nanostructure using pulsed laser ablation in liquid for photoelectric detector. Mater. Sci. Semicond. Process, 2022, 150: 106911.
[20] ZHANG M, LUO Q, SHENG C, et al. Space-confined growth of large-mismatch CsPb(BrxCI1-x)3/GaN heterostructures with tunable band alignments and optical properties. Inorg. Chem. Front., 2022, 9(18): 4661.
[21] SONG W, CHEN J, LI Z L, et al. Self-powered MXene/GaN van der Waals heterojunction ultraviolet photodiodes with superhigh efficiency and stable current outputs. Adv. Mater., 2021, 33(27): 2101059.
[22] MASHADIEVA L F, ALIEV Z S, SHEVELKOV A V, et al. Experimental investigation of the Ag-Bi-I ternary system and thermodynamic properties of the ternary phases. J. Alloys Compd., 2013, 551: 512.
[23] ZHANG Z M, FANG X S. Preparation and photodetection property of ZnO nanorods/ZnCo2O4 nanoplates heterojunction. J. Inorg. Mater., 2019, 34(9): 991.
[24] XUE X, LU C, LUO M, et al. Type-I SnSe2/ZnS heterostructure improving photoelectrochemical photodetection and water splitting. Sci. China Mater., 2022, 66(1): 127.
文章导航

/