研究论文

石墨烯/CdS量子点复合材料的电化学性能研究

展开
  • (1. 江南大学 化学与材料工程学院, 无锡214122; 2. 浙江赞宇科技股份有限公司, 杭州310009 )
陶丽华(1987-), 女, 硕士研究生.

收稿日期: 2010-10-28

  修回日期: 2011-01-18

  网络出版日期: 2011-08-19

基金资助

国家自然科学基金(20771045); 浙江省自然科学基金(Y4100729)

Electrochemical Properties of Graphene/CdS Quantum Dot Composites

Expand
  • (1. School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; 2. Zhejiang Zanyu Technology Co., LTD., Hangzhou 310009, China)

Received date: 2010-10-28

  Revised date: 2011-01-18

  Online published: 2011-08-19

Supported by

National Natural Science Foundation of China(20771045); Natural Science Foundation of Zhejiang Province (Y4100729)

摘要

原位合成法制备石墨烯/CdS量子点复合材料, 并考察其作为锂离子电池负极材料的电化学性能. 交流阻抗揭示电解质在石墨烯/CdS量子点复合材料表面形成稳定的SEI膜, 首次放电比容量达1264.7mAh/g, 循环20次后可逆容量为888.9mAh/g. 结果显示CdS量子点提高了石墨烯结构的稳定和层间传导性, 从而导致复合材料的电化学性能明显优于单独的石墨烯材料. 

本文引用格式

陶丽华, 蔡 燕, 李在均, 任国晓, 刘俊康 . 石墨烯/CdS量子点复合材料的电化学性能研究[J]. 无机材料学报, 2011 , 26(9) : 912 -916 . DOI: 10.3724/SP.J.1077.2011.00912

Abstract

Graphene/CdS quantum dot composites were prepared via in situ synthesis and its electrochemical performances as anode material for lithium-ion batteries were investigated. Ac impendence spectra reveal that electrolytes form a fine solid electrolyte interphase film (SEI) on the surface of the graphene/CdS quantum dot composites. The initial discharge capacity of the lithium-ion battery using graphene/CdS quantum dot as anode is about to 1264.7mAh/g and reversible capacity is 888.9mAh/g after 20 cycles. The results indicate that the CdS quantum dot improve the stability of the graphene structure and the conductivity between graphene sheets, so the electrochemical performance of graphene/CdS quantum dot composites as anode materials is obviously better than that of graphene materials.

参考文献

[1] Wu Y P, Rahm E, Holze R. Effects of heteroatoms on electrochemical performance of electrode materials for lithium ion batteries. Electrochim. Acta, 2002, 47(21): 3491-3507.

[2] Lian P C, Zhu X F, Liang S Z, et al. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim. Acta, 2010, 55(12): 3909-3914.

[3] Guo P, Song H H, Chen X H. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem. Commun., 2009, 11(6): 1320-1324.

[4] Wang C Y, Li D, Too C O, et al. Electrochemical properties of graphene paper electrode used in lithium batteries. Chem. Mater., 2009, 21(13): 2604-2606.

[5] Wang G X, Shen X P, Yao J, et al. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon, 2009, 47(8): 2049-2053.

[6] Pan D Y, Wang S, Zhao B, et al. Li storage properties of disordered graphene nanosheets. Chem. Mater., 2009, 21(14): 3136-3142.

[7] Yoo E, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett., 2008, 8(8): 2277-2282.

[8] Liang M H, Zhi L J. Graphene-based electrode materials for rechargeable lithium batteries. J. Mater. Chem., 2009, 19(20): 5871-5878.

[9] Wang G X, Wang B, Wang X L, et al. Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J. Mater. Chem., 2009, 19(44): 8378-8384.

[10] Lee J K, Smith K B, Hayner C M, et al. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem. Commun., 2010, 46(12): 2025-2027.

[11] Chou S L, Wang J Z, Choucair M, et al. Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun., 2010, 12(2): 303-306.

[12] Chen S Q, Chen P, Wu M H, et al. Graphene supported Sn-Sb@carbon core-shell particles as a superior anode for lithium ion batteries. Electrochem. Commun., 2010, 12(10): 1302-1306.

[13] Yao J, Shen X P, Wang B, et al. In situ chemical synthesis of SnO2-graphene nanocomposite as an anode materials for lithium- ion batteries.-Electrochem. Commun., 2009, 11(10): 1849-1852.

[14] Peak S M, Yoo E J, Honma I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano lett., 2009, 9(1): 72-75.

[15] Yang S B, Cui G L, Pang S P, et al. Fabrication of cobalt and cobalt oxide/graphene composites:towards high-performance anode materials for lithium ion batteries. Chemsuschem, 2010, 3(2): 236-239.

[16] Nose K, Fujita H, Omata T, et al. Chemical role of amines in the colloidal synthesis of CdSe quantum dots and their luminescence properties.-J. Lumin., 2007, 126(1): 21-26.

[17] Bera P, Kim C H, Seok S I. High-yield synthesis of quantum-  confined CdS nanorods using a new dimeric cadmium(Ⅱ) complex of S-benzyldithiocarbazate as single-source molecular precursor. Solid State Sci., 2010, 12(4): 532-535.

[18] Unni C, Philip D, Gopchandran K G. Studies on optical absorption and photoluminescence of thioglycerol-stabilized CdS quantum dots. Spectrochim. Acta A, 2008, 71(4): 1402-1407.

[19] Cao AN, Liu Z, Chu S S, et al. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater., 2010, 22(1): 103-106.

[20] 郑洪河. 锂离子电池电解质. 北京: 化学工业出版社, 2006: 69-103.
文章导航

/