研究论文

钽电容器用钽壳内壁RuO2薄膜电极的表征及电化学性能

展开
  • (中南大学 材料科学与工程学院, 长沙 410083)

收稿日期: 2009-12-17

  修回日期: 2010-03-21

  网络出版日期: 2010-07-19

基金资助

国家863高技术项目(2007AA03Z240)

Characterization and Electrochemical Properties of RuO2 Film Electrode on the Inner-wall of Tantalum Shell for Capacitor

Expand
  • (School of Materials Science and Engineering, Central South University, Changsha 410083, China)

Received date: 2009-12-17

  Revised date: 2010-03-21

  Online published: 2010-07-19

摘要

采用涂覆热分解氯化钌的方法, 在金属钽壳内壁表面形成二氧化钌薄膜涂层, 作为钽电容器的负极材料, 可以提高全钽电容器的寿命及可靠性. 采用扫描电子显微镜和X射线衍射仪对二氧化钌薄膜的表面形貌和结构进行表征. 采用循环伏安、恒流充放电和电化学阻抗谱等测试手段来表征二氧化钌薄膜电极的电化学性能. 研究结果表明, 热处理温度为280℃时制备的二氧化钌薄膜呈无定形的非晶态, 薄膜电极具有212F/g的电容量, 电化学性能良好. 组装成ST3型60V330μF全钽电容器, 经过赋能、电老化后容量约为345μF, 等效串联电阻小于1Ω, 漏电流小于10μA.

本文引用格式

甘卫平, 刘继宇, 刘 泓, 李 祥, 马贺然 . 钽电容器用钽壳内壁RuO2薄膜电极的表征及电化学性能[J]. 无机材料学报, 2010 , 25(8) : 882 -886 . DOI: 10.3724/SP.J.1077.2010.00882

Abstract

Using the methods of coated and thermal decomposed ruthenium chloride, the RuO2 thin film was synthesized on the inner-wall surface of tantalum shell. Its morphology and structure were characterized by scanning electron microscope and X-ray diffraction. The electrochemical performances of the RuO2 thin film electrode were tested by cyclic voltammetry, galvanostatic charging/discharging and electrochemical impedance spectroscope. The results show that the RuO2 thin film calcinated at 280℃ has amorphous structure and the specific capacitance of the electrode is 212F/g (in 0.5 mol/L H2SO4 electrolyte) with good electrochemical performance. When the films are assembled into ST3 type 60 V 330 μF tantalum capacitors, the capacitance can still maintain 345μF after celaring and electrical aging. The equivalent series resistance (ESR) is less than 1Ω and the leakage current is less than10μA.

参考文献

[1]屈乃琴, 陈久录. 国内外片式钽电容器的开发与发展. 稀有金属与硬质合金, 2000, 142(3): 50-52.
[2]程越伟, 郑爱国, 潘伦桃, 等. 电容器钽粉的高比容化. 宁夏工程技术, 2006, 5(1): 99-101.
[3]钟景明, 李春光, 高 勇, 等. 片式钽电容器的研究现状与发展趋势. 稀有金属快报, 2003(11): 1-3.
[4]李双龙, 陈小平. 钽电解电容器的失效及对策. 可靠性物理与失效分析技术, 2003, 4: 47-49.
[5]刘建清, 李 荐, 戴艳阳, 等. 固体钽电解电容器研究发展趋势. 稀有金属与硬质合金, 2002, 30(2): 41-44.
[6]王秀宇, 刘仲娥, 张之圣, 等. 全钽全密封液体钽电解电容器. 电子元件与材料, 2008, 27(1): 13-15.
[7]薛仁径, 彭宝霞. 如何提高固钽和液钽电容器的使用可靠性. 电子产品可靠性与环境试验, 1990(5): 34-38.
[8]朱宝京, 丁凌峰. 钽电容器密封微晶玻璃的试制. 玻璃, 1999, 26(6): 1-3.
[9]贾廷庆, 傅顺旺. 提高钽电容器可靠性的一种新老化方法. 电子元件与材料, 2007, 26(12): 69-71.
[10]陈国光. 电解电容器. 西安: 西安交通大学出版社, 1986: 159-160.
[11]Joseph S. 钽混合电容器有望提升电源性能. 今日电子, 2002(10): 7.
[12]刘勇刚, 刘新军. 非固体电解质全钽电容器及其制作方法. 中国, H01G9/00, CN101339849A. 2009.01.07.
[13]Patil P S, Ennaoui E A, Lokhande C D, et al. Characterization of ultrasonic spray pyrolysed ruthenium oxide thin films.Thin Solid Films,1997, 310(1):57-62
[14]张招贤. 钛电极工学. 北京: 冶金工业出版社, 2000: 223-226.
[15]Zheng J P, Cygan T W, Jow T R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors.Journal of Electrochemistry Society,1995, 142(8):2699-2703
[16]Kurzweil P. Precious metal oxides for electrochemical energy converters: pseudocapacitance and pH dependence of redox processes.Journal of Power Sources,2009, 190(1):189-200
[17]甘卫平, 黎晓辉, 欧定斌, 等. 退火温度对钽基RuO2 · nH2O 电沉积薄膜电容性能的影响. 中南大学学报(自然科学版), 2006, 37(4): 660-664.
[18]Nicholson R S. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics.Analytical Chemistry,1965, 37(11):1351-1355
[19]Zheng J P, Jow T R. A new charge storage mechanism for electrochemical capacitors.Journal of Electrochemistry Society,1995, 142(1):6-8
[20]Zhang S S, Xu K, Jow T R. Electrochemical impedance study on the low temperature of Li-ion batteries.Electrochim Acta,2004, 49(7):1057-1061

文章导航

/