MTS/H2体系CVD SiC的气相分析
收稿日期: 2009-11-25
修回日期: 2010-03-15
网络出版日期: 2010-07-19
基金资助
国家重点基础研究发展计划(973) (50820145202)
Analysis of Gaseous Species in Chemical Vapor Deposition of SiC from MTS/H2
Received date: 2009-11-25
Revised date: 2010-03-15
Online published: 2010-07-19
采用CG/MS定性定量分析了MTS/H2体系CVD SiC的气相组成, 考察了沉积温度、总压和流量对气相组成的影响, 从反应速率和分子浓度大小的角度出发, 分析了MTS在H2中的分解步骤. 主要结论如下: (1) 检测到CH4、C2H6、C2H4、C3H6、C2H2、MTS、SiCl4和CH3SiHCl2物质, 其中CH4和SiCl4的含量较高. (2) 体系温度、总压和总流量对气相组成有显著影响, 其影响规律与热力分析结果一致. (3) MTS主要以Si-C键断裂引发分解反应, 经历与原反应气反应、中间物质和副产物生成等主要阶段, CH3®C2H6®C2H4®C2H2是生成烷烃化合物的主要路径.
卢翠英, 成来飞, 赵春年, 张立同 . MTS/H2体系CVD SiC的气相分析[J]. 无机材料学报, 2010 , 25(8) : 845 -850 . DOI: 10.3724/SP.J.1077.2010.00845
Qualitative and quantitative analyses were carried out to investigate the effect of the deposition temperature, pressure and flow rate of chemical vapor deposition imposed on the concentrations of MTS/H2 CVD SiC gaseous species through GC/MS method. Decomposition procedures of MTS in H2 based on the reaction rate and concentrations of species were analyzed. The results show that: (1) the identified gaseous species are CH4、C2H6、C2H4, C3H6, C2H2, MTS, SiCl4 and CH3SiHCl2, of which the concentrations of CH4 and SiCl4 are comparatively higher; (2) temperature, pressure and flow rate have great effect on the concentrations of gaseous species, and their regular patterns follow the same dependence as the thermodynamics; (3) MTS mainly starts with the cracking and decomposition of Si-C, and experiences three stages, the reaction with H2, the formation of middle objects and also by-products. It is suggested that the main formation route of alkane is CH3®C2H6®C2H4®C2H2.
Key words: GC/MS; analysis of gaseous species; CVD SiC; MTS/H2
[1]Rottner K, Frischholz M, Myrtveit T, et al. SiC power devices for high voltage applications.Materials Science and Engineering B,1999, 61-62:330-338
[2]徐永东, 张立同, 成来飞, 等(XU Yong-Dong, et al). 碳/碳化硅摩阻复合材料的研究进展. 硅酸盐学报(Journal of the Chinese Ceramic Society), 2006, 34(8): 992-999.
[3]Ohnabe H, Masaki S, Onozuka M, et al. Potential application of ceramic matrix composites to aero-engine components. Composites, 1999, Part A, 30(4): 489-496.
[4]孟广耀编著. 化学气相淀积与无机新材料. 北京: 科学出版社. 1984: 4.
[5]Allendorf M D, Melius C F. Understanding gas-phase reactions in the thermal CVD of hard coatings using computational methods.
[6]Surface and Coatings Technology, 1998, 108-109(1/2/3): 191-199.
[7]Brennfleck K, Schneweis S, Weiss R. In-situ spectroscopic monitoring for sic-cvd process control. J. Phys. IV., 1999, 9(8): 1041-1048.
[8]Jonas S, Ptak W S, Sadowski W, et al. FTIR in-situ studies of the gas phase reactions in chemical vapor deposition of SiC.J. Electrochem. Soc,1995, 142(7):2357-2362
[9]Heinrich J, Hemeltjen S, Marx G. Analytics of CVD processes in the deposition of SiC by methyltrichlorosilane. Mikrochim. Acta, 2000, 133(1-4): 209-214.
[10]朱庆山, 邱学良, 马昌文. 化学气相沉积制备SiC-II.动力学研究. 化工冶金, 1998, 19(4): 289-292.
[11]肖 鹏, 徐永东, 黄伯云(XIAO Peng, et al). 沉积条件对CVD-SiC沉积热力学与形貌的影响. 无机材料学报(Journal of Inorganic Materials), 2002, 17(4): 877-881.
[12]卢翠英, 成来飞, 张立同, 等(LU Cui-Ying, et al). 丙烯沉积热解碳的原位动力学分析. 复合材料学报, 2008, 25(6): 152-155.
[13]卢翠英, 成来飞, 张立同, 等(LU Cui-Ying, et al). 化学气相沉积碳化硅的热力学分析. 无机材料学报(Journal of Inorganic Materials), 2008, 23(6): 1189-1192.
[14]Allendorf M D, Melius C F. Theoretical study of the thermochemistry of molecules in the Si-C-Cl-H system.J. Phys. Chem,1993, 97(3):720-728
[15]Papasouliotis D, Sotirchos S V. On the homogeneous chemistry of SiC-based ceramics from CH3SiCl3/H2 gas precursor.J. ElectroChem. Soc,1994, 141(6):1599-1611
[16]Hidaka Y, Oki T, Kawano H. Thermal decomposition of propane in shock waves.Int. J. Chem. Kinetics,1989, 21(8):689-701
[17]Cao J R, Back M H. Kinetics of the reaction C2H5 + H2 - C2H6 + H from 1111-1200 K.Can. J. Chem,1982, 60(24):3039-3048
[18]Allendorf M D, Kee R J. A model of silicon carbide chemical vapor deposition.J. Electrochem. Soc,1991, 138(3):841-853
[19]Stewart P H, Psmith G, Golden D M. The pressure and temperature dependence of methane decomposition.Int. J. Chem. Kinetics,1989, 21(10):923-945
[20]Westbrook C K, Pitz W J. A comprehensive chemical kinetic reaction mechanism for oxidation and pyrolysis of propane and propene.Comb. Sci. Tech,1984, 37(3/4):117-152
[21]Cagliostro D E, Riccitiello S R. Model for the formation of silicon carbide from the pyrolysis of dichlorodimethylsilane in hydrogen: I silicon formation from chlorosilanes.J. Am. Ceram. Soc,1993, 76(1):39-48
[22]Cagliostro D E, Riccitiello S R. Model for The formation of silicon carbide from the pyrolysis of dichlorodimethylsilane in hydrogen: silicon carbide formation from silicon and methane.J. Am. Ceram. Soc,1993, 76(1):49-53
/
〈 | 〉 |