研究论文

MTS/H2体系CVD SiC的气相分析

展开
  • (1. 榆林学院 化学与化工学院, 榆林 719000; 2. 西北工业大学 超高温结构复合材料国防科技重点实验室, 西安 710072)

收稿日期: 2009-11-25

  修回日期: 2010-03-15

  网络出版日期: 2010-07-19

基金资助

国家重点基础研究发展计划(973) (50820145202)

Analysis of Gaseous Species in Chemical Vapor Deposition of SiC from MTS/H2

Expand
  • (1. School of chemistry and chemical engineering, Yulin University, Yulin 719000, China; 2. National Key Laboratory of Thermostructure Composite Materials, Northwestern Polytechnical University, Xi’an 710072, China)

Received date: 2009-11-25

  Revised date: 2010-03-15

  Online published: 2010-07-19

摘要

采用CG/MS定性定量分析了MTS/H2体系CVD SiC的气相组成, 考察了沉积温度、总压和流量对气相组成的影响, 从反应速率和分子浓度大小的角度出发, 分析了MTS在H2中的分解步骤. 主要结论如下: (1) 检测到CH4、C2H6、C2H4、C3H6、C2H2、MTS、SiCl4和CH3SiHCl2物质, 其中CH4和SiCl4的含量较高. (2) 体系温度、总压和总流量对气相组成有显著影响, 其影响规律与热力分析结果一致. (3) MTS主要以Si-C键断裂引发分解反应, 经历与原反应气反应、中间物质和副产物生成等主要阶段, CH3®C2H6®C2H4®C2H2是生成烷烃化合物的主要路径.

关键词: GC/MS; 气相分析; CVD SiC; MTS/H2

本文引用格式

卢翠英, 成来飞, 赵春年, 张立同 . MTS/H2体系CVD SiC的气相分析[J]. 无机材料学报, 2010 , 25(8) : 845 -850 . DOI: 10.3724/SP.J.1077.2010.00845

Abstract

Qualitative and quantitative analyses were carried out to investigate the effect of the deposition temperature, pressure and flow rate of chemical vapor deposition imposed on the concentrations of MTS/H2 CVD SiC gaseous species through GC/MS method. Decomposition procedures of MTS in H2 based on the reaction rate and concentrations of species were analyzed. The results show that: (1) the identified gaseous species are CH4、C2H6、C2H4, C3H6, C2H2, MTS, SiCl4 and CH3SiHCl2, of which the concentrations of CH4 and SiCl4 are comparatively higher; (2) temperature, pressure and flow rate have great effect on the concentrations of gaseous species, and their regular patterns follow the same dependence as the thermodynamics; (3) MTS mainly starts with the cracking and decomposition of Si-C, and experiences three stages, the reaction with H2, the formation of middle objects and also by-products. It is suggested that the main formation route of alkane is CH3®C2H6®C2H4®C2H2.

参考文献

[1]Rottner K, Frischholz M, Myrtveit T, et al. SiC power devices for high voltage applications.Materials Science and Engineering B,1999, 61-62:330-338
[2]徐永东, 张立同, 成来飞, 等(XU Yong-Dong, et al). 碳/碳化硅摩阻复合材料的研究进展. 硅酸盐学报(Journal of the Chinese Ceramic Society), 2006, 34(8): 992-999.
[3]Ohnabe H, Masaki S, Onozuka M, et al. Potential application of ceramic matrix composites to aero-engine components. Composites, 1999, Part A, 30(4): 489-496.
[4]孟广耀编著. 化学气相淀积与无机新材料. 北京: 科学出版社. 1984: 4.
[5]Allendorf M D, Melius C F. Understanding gas-phase reactions in the thermal CVD of hard coatings using computational methods.
[6]Surface and Coatings Technology, 1998, 108-109(1/2/3): 191-199.
[7]Brennfleck K, Schneweis S, Weiss R. In-situ spectroscopic monitoring for sic-cvd process control. J. Phys. IV., 1999, 9(8): 1041-1048.
[8]Jonas S, Ptak W S, Sadowski W, et al. FTIR in-situ studies of the gas phase reactions in chemical vapor deposition of SiC.J. Electrochem. Soc,1995, 142(7):2357-2362
[9]Heinrich J, Hemeltjen S, Marx G. Analytics of CVD processes in the deposition of SiC by methyltrichlorosilane. Mikrochim. Acta, 2000, 133(1-4): 209-214.
[10]朱庆山, 邱学良, 马昌文. 化学气相沉积制备SiC-II.动力学研究. 化工冶金, 1998, 19(4): 289-292.
[11]肖 鹏, 徐永东, 黄伯云(XIAO Peng, et al). 沉积条件对CVD-SiC沉积热力学与形貌的影响. 无机材料学报(Journal of Inorganic Materials), 2002, 17(4): 877-881.
[12]卢翠英, 成来飞, 张立同, 等(LU Cui-Ying, et al). 丙烯沉积热解碳的原位动力学分析. 复合材料学报, 2008, 25(6): 152-155.
[13]卢翠英, 成来飞, 张立同, 等(LU Cui-Ying, et al). 化学气相沉积碳化硅的热力学分析. 无机材料学报(Journal of Inorganic Materials), 2008, 23(6): 1189-1192.
[14]Allendorf M D, Melius C F. Theoretical study of the thermochemistry of molecules in the Si-C-Cl-H system.J. Phys. Chem,1993, 97(3):720-728
[15]Papasouliotis D, Sotirchos S V. On the homogeneous chemistry of SiC-based ceramics from CH3SiCl3/H2 gas precursor.J. ElectroChem. Soc,1994, 141(6):1599-1611
[16]Hidaka Y, Oki T, Kawano H. Thermal decomposition of propane in shock waves.Int. J. Chem. Kinetics,1989, 21(8):689-701
[17]Cao J R, Back M H. Kinetics of the reaction C2H5 + H2 - C2H6 + H from 1111-1200 K.Can. J. Chem,1982, 60(24):3039-3048
[18]Allendorf M D, Kee R J. A model of silicon carbide chemical vapor deposition.J. Electrochem. Soc,1991, 138(3):841-853
[19]Stewart P H, Psmith G, Golden D M. The pressure and temperature dependence of methane decomposition.Int. J. Chem. Kinetics,1989, 21(10):923-945
[20]Westbrook C K, Pitz W J. A comprehensive chemical kinetic reaction mechanism for oxidation and pyrolysis of propane and propene.Comb. Sci. Tech,1984, 37(3/4):117-152
[21]Cagliostro D E, Riccitiello S R. Model for the formation of silicon carbide from the pyrolysis of dichlorodimethylsilane in hydrogen: I silicon formation from chlorosilanes.J. Am. Ceram. Soc,1993, 76(1):39-48
[22]Cagliostro D E, Riccitiello S R. Model for The formation of silicon carbide from the pyrolysis of dichlorodimethylsilane in hydrogen: silicon carbide formation from silicon and methane.J. Am. Ceram. Soc,1993, 76(1):49-53

文章导航

/