三级化学气相沉积法制备SiC纤维及拉伸性能测试
收稿日期: 2009-11-25
修回日期: 2010-01-14
网络出版日期: 2010-07-19
基金资助
国家自然科学基金(50871086); 凝固技术国家重点实验室自主研究课题(KP200906)
Preparation and Tensile Test of SiC Fiber Fabricated by Three-stage Chemical Vapor Deposition
Received date: 2009-11-25
Revised date: 2010-01-14
Online published: 2010-07-19
以甲基三氯硅烷为先驱体, 用直流电热三级化学气相沉积法制备了带有碳涂层的钨芯SiC纤维, 测定了纤维的室温拉伸强度, 并用Weibull分布对纤维的拉伸强度进行了评价. 利用扫描电镜(SEM)、X射线衍射仪(XRD)和透射电镜(TEM)分析了纤维的断口形貌、相结构组成和W/SiC界面反应层的微观结构. 结果显示, 三级化学气相沉积法制备SiC纤维拥有两层β-SiC和均匀的表面碳涂层, 钨芯和SiC之间存在厚度约为0.35μm的界面反应层, 纤维的平均拉伸强度和Weibull模数分别达到3266MPa和16.3, 并对纤维的断裂机理进行了分析和讨论.
张荣军, 杨延清, 沈文涛 . 三级化学气相沉积法制备SiC纤维及拉伸性能测试[J]. 无机材料学报, 2010 , 25(8) : 840 -844 . DOI: 10.3724/SP.J.1077.2010.00840
Continuous silicon carbide (SiC) fiber with carbon coating was fabricated by three-stage chemical vapor deposition (CVD) on W filament heated by direct current (DC), using CH3SiCl3 as gaseous reactant for SiC as well as C2H2 for the outmost carbon coating. Young’s modulus and tensile strength of the fiber were tested at room temperature, while Weibull distribution was conducted for evaluation of the tensile properties of the fiber. Fracture morphology, phase structure and microstructure of the fiber were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscope (TEM). Results show that the SiC fiber, from W core to outside, exhibits a W/SiC interfacial reaction layer with a thickness of about 0.35μm, two layers of SiC and an even carbon coating. XRD pattern indicates that the SiC layers are all composed of β-SiC, which corresponds to diffraction angle of 35.6°, 60.1°, 72.1° and 75.7°. The mean tensile strength and Weibull modulus of the fiber reach 3266 MPa and 16.3, respectively. Furthermore, fracture mechanism of the fiber is discussed.
[1]杨延清, 朱 艳, 陈 彦, 等(YANG Yan-Qing, et al). SiC纤维增强Ti基复合材料的制备及性能. 稀有金属材料与工程(Rare Metal Mat.Eng.), 2002, 31(3): 201-204.
[2]Preuss M, Rauchs G, Withers P J, et al. Interfacial shear strength of Ti/SiC fibre composites measured by synchrotron strain measurement.Composites A,2002, 33(10):1381-1385
[3]Luo X, Yang Y Q, Liu C X, et al. The fabrication and property of SiC fiber reinforced copper matrix composites.Mater. Sci. Eng. A,2007, 459(1/2):244-250
[4]Ning X J, Pirous P. The microstructure of SCS-6 SiC fiber.J. Mater. Res,1991, 6(10):2234-2248
[5]Cheng T T, Jones I P, Shatwell R A, et al. The microstructure of sigma 1140+ SiC fibres.Mater. Sci. Eng. A,1999, 260(1/2):139-145
[6]石南林, 刘清民, 常新春(SHI Nan-Lin, et al). SiC纤维的强度与表面微观形貌. 金属学报(Acta Metall. Sin.), 1990, 26(3): 225-228.
[7]杨延清, 文 琼, 马志军, 等. SiC/Ti-6Al-4V复合材料界面反应的扫描电镜分析. 稀有金属快报, 2004, 23(7): 22-25.
[8]徐 婷, 杨延清, 刘翠霞, 等. CVD法SiC纤维的强度测试及评价. 西北工业大学学报, 2006, 24(3): 342-345.
[9]蔡 杉, 李占一, 董 妍, 等. SiC纤维直流电阻加热CVD工艺研究. 材料工程, 2005(10): 47-51.
[10]García-Leiva M C, Oca-a I, Martín-Meizoso A, et al. Fracture mechanics of Sigma SM1140+ fibre.Engineering Fracture Mechanics,2002, 69(9):1007-1013
[11]Guo S Q, Kagawa Y, Tanaka Y, et al. Microstructure and role of outermost coating for tensile strength of SiC fiber.Acta Mater,1998, 46(14):4941-4945
[12]罗恒军, 杨延清, 黄 斌, 等. C涂层对SiC纤维增强Ti基复合材料界面行为的影响. 材料工程, 2009(3): 13-17.
[13]Chollon G, Naslain R, Rrentice C, et al. High temperature properties of SiC and diamond CVD-monofilaments.Journal of the European Ceramic Society,2005, 25(11):1929-1942
[14]Nyutu K E, Suib L S. Experimental design in the deposition of BN interface coatings on SiC fibers by chemical vapor deposition.Surface and Coating Technology,2006, 201(6):2741-2748
[15]乔生儒. 复合材料细观力学性能. 西安: 西北工业大学出版社, 1997: 22-24.
[16]Guo C Y, Zhang C B, He L L, et al. Microstructure characterization of long W core SiC fiber.J. Mater. Sci. Technol,2007, 23(5):677-684
/
〈 |
|
〉 |