研究快报

掺杂TiO2纳米管的润湿性能与体外生物活性

展开
  • (1. 上海交通大学 材料科学与工程学院 微电子材料与技术研究所, 上海200240; 2. 中国科学院 上海硅酸盐研究所 高性能陶瓷和超微结构国家重点实验室, 上海200050)

收稿日期: 2009-11-01

  修回日期: 2009-03-05

  网络出版日期: 2010-06-10

基金资助

The National High technology Research and Development Program (863 program) of China (2006AA02A1); Shanghai Pujiang Program (07PJ14047, 07PJ147092)

Wettability and In Vitro Bioactivity of Doped TiO2 Nanotubes

Expand
  • (1. Lab of Microelectronic Materials and Technology, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China)

Received date: 2009-11-01

  Revised date: 2009-03-05

  Online published: 2010-06-10

Supported by

The National High technology Research and Development Program (863 program) of China (2006AA02A1); Shanghai Pujiang Program (07PJ14047, 07PJ147092)

摘要

以低模量钛合金(Ti35Nb和Ti35Nb15Zr)为阳极氧化基材, 采用表面阳极氧化方法制备出铌元素和锆元素掺杂的非晶TiO2纳米管阵列, 比较了掺杂前后纳米管的润湿性能与体外生物活性. 实验结果表明, 加入铌和锆元素可减小TiO2纳米管的管径, 并有助于增大TiO2纳米管的长度. TiO2纳米管表现出与未氧化前的金属基材所不同的疏水行为. 掺杂TiO2纳米管的润湿性随着掺杂元素的变化而变化, 铌元素的掺杂可使TiO2纳米管的润湿性改善, 铌元素和锆元素共同掺杂对润湿性的改善作用更明显. 在模拟体液(SBF)中浸泡后, 掺杂TiO2纳米管可快速诱导磷灰石的形成. 铌锆元素共同掺杂的纳米管在初始浸泡阶段呈现较快的磷灰石沉积速率. 上述研究结果表明, 可以通过基材合金化设计来调控或修饰材料表面的亲水或疏水性能, 从而探索掺杂TiO2纳米管的生物学性能. 

本文引用格式

黄 麟, 宁聪琴, 丁冬雁, 白 硕, 秦 锐, 李 明, 毛大立 . 掺杂TiO2纳米管的润湿性能与体外生物活性[J]. 无机材料学报, 2010 , 25(7) : 775 -779 . DOI: 10.3724/SP.J.1077.2010.09749

Abstract

With low-modulus alloys of Ti35Nb and Ti35Nb15Zr as the anodization substrates, amorphous TiO2 nanotube arrays doped by Nb and Zr elements were fabricated through a surface anodization method. The wettability and in vitro bioactivity of the doped TiO2 nanotubes and undoped nanotubes were investigated. Experimental results indicated that the existence of Nb and Zr elements in the anodic oxides could refine the diameter of the nanotubes and help to grow longer nanotubes. All of the as-anodized nanotubes demonstrated a hydrophobic behavior, which was different from those of the metallic substrate surface. The wettability of the TiO2-based nanotubes varied with the type of the substrate or dopant element. The doping with Nb element could improve the wetting behavior of the TiO2 nanotubes. And simultaneous doping with Nb and Zr elements could have more significant improvement in the wetting behavior. After immersion in simulated body fluids (SBF) the doped TiO2 nanotubes could induce a quick apatite formation. The Nb/Zr doped nanotubes presented quicker apatite formation rate than the Ti-Nb-O nanotubes did at the initial immersion stage. The above findings make it possible to further control or modify the wettability toward either hydrophobic or hydrophilic surfaces, and explore related biological properties of the doped nanotubes.

参考文献

[1]Lausmaa J, Mattson L, Rolander U, et al. Chemical composition and morphology of titanium surface oxides. Mater. Res. Soc. Symp. Proc., 1986, 55: 351-359.
[2]Qing L, Jiang D, Francis K M, et al. The role of surface functional groups in calcium phosphate nucleation on titanium foil: a self-assembled monolayer technique. Biomaterials, 2002, 23(15): 3103-3111.
[3]Kokubo T. Bioactive glass ceramics: properties and applications. Biomaterials, 1991, 12(2): 155-163.
[4]Hench L L, Wilson J. Surface-active biomaterials. Science, 1984, 226(3): 630-636.
[5]Oh S, Finones R, Daraio C, et al. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials, 2005, 26(24): 4938-4943.
[6]Ziats N P, Miller K M, Anderson J M. In vitro and in vivo interactions of cells with biomaterials. Biomaterials, 1988, 9(1): 5-13.
[7]Kasemo B, Lausmaa J. Biomaterial and implant surfaces: on the role of cleanliness, contamination, and preparation procedures. J. Biomed. Mater. Res., 1988, 22(A2): 145-158.
[8]Vogler E A. Structure and reactivity of water at biomaterial surfaces. Adv. Colloid. Interface Sci., 1998, 74(1/2/3): 69-117.
[9]Ninham B W, Kurihara K, Vinogradova O I. Structure and reactivity of water at biomaterial surfaces. Colloids Surf. A, 1997, 123-124: 7-12.
[10]Baier R E, Meenaghan M A, Hartman L C, et al. Implant surface characteristics and tissue interaction. J. Oral. Implantol., 1988, 13(4): 594-606.
[11]Ghicov A, Aldabergenova S, Tsuchiya H, et al. TiO2-Nb2O5 nanotubes with electrochemically tunable morphologies. Angew. Chem. Int. Edit., 2006, 45(42): 6993-6996.
[12]Li Y, Ding D, Ning C, et al. Thermal stability and in vitro bioactivity of Ti-Al-V-O nanostructures fabricated on Ti6Al4V alloy. Nanotechnology, 2009, 20(6): 065708-1-6.
[13]Ding D, Ning C, Huang L, et al. Anodic fabrication and bioactivity of Nb-doped TiO2 nanotubes. Nanotechnology, 2009, 20(30): 305103-1-6.
[14]Ghicov A, Schmuki P. Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem. Commun., 2009, 20: 2791-2808.
[15]Yasuda K, Schmuki P. Formation of self-organized zirconium titanate nanotube layers by alloy anodization. Adv. Mater., 2007, 19(13): 1757-1759.
[16]Tsuchiya H, Macak J M, Ghicov A, et al. Nanotube oxide coating on Ti-29Nb-13Ta-4.6Zr alloy prepared by self-organizing anodization. Electrochimica Acta, 2006, 52(1): 94-101.
[17]Ohtsuki C, Kokubo T, Yamamuro T. Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid. J. Non-Cryst. Solids, 1992, 143(1): 84-92.
[18]Anselme K, Bigerelle M, Noel B, et al. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J. Biomed. Mater. Res., 1999, 49(2): 155-166.
[19]Lawrence J, Hao L, Chew H R. On the correlation between Nd: YAG laser-induced wettability characteristics modification and osteoblast cell bioactivity on a titanium alloy. Surf. & Coat. Technol., 2006, 200(18/19): 5581-5589.
[20]Kurella A K, Hu M Z, Dahotre N B. Effect of microstructural evolution on wettability of laser coated calcium phosphate on titanium alloy. Mater. Sci. Eng. C, 2008, 28(8): 1560-1564.
[21]Balaur E, Macak J, Taveira L, et al. Tailoring the wettability of TiO2 nanotube layers. Electrochem. Commun., 2005, 7(10): 1066-1070.
[22]Hsieh C Y, Tsaia S P, Wang D M, et al. Preparation of γ-PGA/chitosan composite tissue engineering matrices. Biomaterials, 2005, 26(28): 5617-5623.
[23]Takebe J, Itoh S, Okada J, et al. Enhanced cellular mobility guided by TiO2 nanotube surfaces. J. Biomed. Mater. Res., 2000, 51(3): 398-407.
[24]Zhang Y M, Bataillon-Linez P, Huang P, et al. Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior. J. Biomed. Mater. Res., 2004, 68A(2): 383-391.
[25]Tsuchiya H, Macak J, Müller L, et al. Hydroxyapatite growth on anodic TiO2 nanotubes. J. Biomed. Mater. Res., 2006, 77A(2): 534-541.
[26]Kunze J, Müller L, Macak J M, et al. Time-dependent growth of biomimetic apatite on anodic TiO2 nanotubes. Electrochim. Acta, 2008, 53(23): 6995-7003.
[27]Kodama A, Bauer S, Komatsu A, et al. Bioactivation of titanium surfaces using coatings of TiO2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite. Acta Biomater., 2009, 5(6): 2322-2330.

文章导航

/