研究论文

烧结方式对羟基磷灰石陶瓷颗粒性能和蛋白吸附的影响

展开
  • (四川大学 1. 国家生物医学材料工程技术研究中心; 2. 化学工程学院, 成都 610064)

收稿日期: 2009-11-18

  修回日期: 2010-01-04

  网络出版日期: 2010-06-10

基金资助

国家自然科学青年科学基金(50802060); 973计划项目(G2005cb623901)

Effect of Sintering Processes on Surface Properties and Protein Adsorption of Hydroxyapatite Ceramic Particles

Expand
  • (1. National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; 2. School of Chemical Engineering, Sichuan University, Chengdu 610064, China)

Received date: 2009-11-18

  Revised date: 2010-01-04

  Online published: 2010-06-10

摘要

以常规马弗炉和微波烧结两种方式分别制备羟基磷灰石陶瓷颗粒, 对其相组成、微观形貌、表面zeta电位以及蛋白吸附行为进行分析对比. 结果显示, 尽管两种烧结方式制备的羟基磷灰石陶瓷颗粒具有相同的相组成, 但是它们的微观结构、表面zeta电位和蛋白吸附行为存在明显差异. 相对于常规烧结, 微波烧结得到的颗粒具有丰富的微孔隙和接近于纳米尺度的晶粒尺寸, 其表面zeta电位值更小, 能够吸附更多的牛血清白蛋白和更少的溶菌酶. 微波烧结在制备高生物活性纳米羟基磷灰石陶瓷上可能是一种较为理想的方法.

本文引用格式

张慧杰, 朱向东, 王辛龙, 范红松, 张兴栋 . 烧结方式对羟基磷灰石陶瓷颗粒性能和蛋白吸附的影响[J]. 无机材料学报, 2010 , 25(7) : 770 -774 . DOI: 10.3724/SP.J.1077.2010.00770

Abstract

Two types of hydroxyapatite (HA) ceramic particles were respectively fabricated by conventional and microwave sintering processes. The conventionally sintered HA was abbreviated as HACS, and the microwave sintered one was HAMS. The phase compositions, surface morphologies and zeta potentials of both particles were respectively analyzed with X-ray diffraction (XRD), scanning electron microscope (SEM) and zetasizer. Bovine serum albumin (BSA) and lysozyme (LSZ) were selected as models to study their adsorption behaviors on HACS and HAMS. Results confirm that both HA particles crystallize completely, but HACS has larger crystal grain size than HAMS. Although both HACS and HAMS show negative surface zeta potentials in phosphate buffered saline (PBS, pH 7.4), the former has higher absolute value than the latter. Besides, both HA particles exhibit different adsorption ability for BSA and LSZ, and HACS adsorbs fewer BSA but more LSZ than HAMS. The microwave sintering can be a good method to produce nano-HA ceramics with excellent bioactivity.

参考文献

[1]Hench L L. Biomaterials. Science, 1980, 208(4446): 826-831.
[2]Boyde A, Corsi A, Quarto R, et al. Osteoconduction in large macroporous hydroxyapatite ceramic implants: evidence for a complementary integration and disintegration mechanism. Bone, 1999, 24(6): 579-589.
[3]Chang B S, Lee C K, Hong K S, et al. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials, 2000, 21(12): 1291-1298.
[4]Vallet-Regi M, Gonzalez-Calbet J M. Calcium phosphates as substitution of bone tissues. Prog. Solid State Chem., 2004, 32(1/2): 1-31.
[5]章庆国, 赵士芳, 郭宗科, 等. 纳米相陶瓷支架与人成骨细胞生物相容性的体外实验研究. 东南大学学报(自然科学版), 2004, 34(2): 219-223.
[6]Thomas J W, Celaletdin E, Robert H, et al. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J. Biomed. Mater. Res., 2000, 51(3): 475-483.
[7]Wang X L, Fan H S, Xiao Y M, et al. Fabrication and characterization of porous hydroxyapatite/ β-tricalcium phosphate ceramics by microwave sintering. Mater. Lett., 2006, 60(4): 455-458.
[8]Li B, Chen X N, Guo B, et al. Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure. Acta Biomater., 2009, 5(1): 134-143.
[9]Puleo D A, Nanci A. Understanding and controlling the bone–implant interface. Biomaterials, 1999, 20(23/24): 2311-2321.
[10]Dee K, Puleo D, Bizios R, et al. An Introduction to Tissue-biomaterial Interactions. New York: John Wiley, 2002: 37-52.
[11]Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials,1999, 20(23/24): 2287-2303.
[12]Ducheyne P, Kim C S, Pollack S R. The effect of phase differences on the time-dependent variation of the zeta potential of hydroxyapatite. J. Biomed. Mater. Res., 1992, 26(2): 147-168.
[13]Kowalchuk R M, Pollack S R, Ducheyne P, et al. Particle microelectrophoresis of calcium-deficient hydroxyapatite: solution composition and kinetic effects. J. Biomed. Mater. Res., 1993, 27(6): 783-790.
[14]van der Veen M, Norde W, Stuart M C. Electrostatic interactions in protein adsorption probed by comparing lysozyme and succinylated lysozyme. Colloid. Surf. B, 2004, 35(1): 33-40.
[15]Yin G, Liu Z, Zhan J, et al. Impacts of the surface charge property on protein adsorption on hydroxyapatite. Chem. Eng. J., 2002, 87(2): 181-186.
[16]Zhu X D, Fan H S, Li D X, et al. Protein adsorption and zeta potentials of a biphasic calcium phosphate ceramic under various conditions. J. Biomed. Mater. Res. B, 2007, 82B(1): 65-73.
[17]Kawasaki T, Niikura M, Kobayashi Y. Fundamental study of hydroxyapatite high-performance liquid chromatography. III, direct experimental confirmation of the existence of two types of absorbing surface on the hydroxyapatite crystal. J. Chromatogr., 1990, 515: 125-148.
[18]Ohta K, Monma H, Takahashi S. Adsorption characteristics of proteins on calcium phosphates using liquid chromatography. J. Biomed. Mater. Res., 2001, 55(3): 409-414.
[19]Price R L, Ellison K, Haberstroh K M, et al. Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. J. Biomed. Mater. Res. A, 2004, 70A(1): 129-138.
[20]Suh C W, Kim M Y, Choo J B, et al. Analysis of protein adsorption characteristics to nano-pore silica particles by using confocal laser scanning microscopy. J. Biotechnol., 2004, 112(3): 267-277.
[21]Norde W, Giacomelli C E. BSA structural changes during homomolecular exchange between the adsorbed and the dissolved states. J. Biotechnol., 2000, 79(3): 259-268.
[22]Buijs J, Hlady V. Adsorption kinetics, conformation, and mobility of the growth hormone and lysozyme on solid surfaces, studied with TIRF. J. Colloid Interface Sci., 1997, 190(1): 171-181.
[23]Serro A P, Bastos M, Pessoa J C, et al. Bovine serum albumin conformational changes upon adsorption on titania and on hydroxyapatite and their relation with biomineralization. J. Biomed. Mater. Res. A, 2004, 70A(3): 420-427.
[24]Zeng H, Chittur K K, Lacefield W R. Analysis of bovine serum albumin adsorption on calcium phosphate and titanium surfaces. Biomaterials, 1999, 20(4): 377-84.
文章导航

/