[1]Hench L L. Biomaterials. Science, 1980, 208(4446): 826-831.
[2]Boyde A, Corsi A, Quarto R, et al. Osteoconduction in large macroporous hydroxyapatite ceramic implants: evidence for a complementary integration and disintegration mechanism. Bone, 1999, 24(6): 579-589.
[3]Chang B S, Lee C K, Hong K S, et al. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials, 2000, 21(12): 1291-1298.
[4]Vallet-Regi M, Gonzalez-Calbet J M. Calcium phosphates as substitution of bone tissues. Prog. Solid State Chem., 2004, 32(1/2): 1-31.
[5]章庆国, 赵士芳, 郭宗科, 等. 纳米相陶瓷支架与人成骨细胞生物相容性的体外实验研究. 东南大学学报(自然科学版), 2004, 34(2): 219-223.
[6]Thomas J W, Celaletdin E, Robert H, et al. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J. Biomed. Mater. Res., 2000, 51(3): 475-483.
[7]Wang X L, Fan H S, Xiao Y M, et al. Fabrication and characterization of porous hydroxyapatite/ β-tricalcium phosphate ceramics by microwave sintering. Mater. Lett., 2006, 60(4): 455-458.
[8]Li B, Chen X N, Guo B, et al. Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure. Acta Biomater., 2009, 5(1): 134-143.
[9]Puleo D A, Nanci A. Understanding and controlling the bone–implant interface. Biomaterials, 1999, 20(23/24): 2311-2321.
[10]Dee K, Puleo D, Bizios R, et al. An Introduction to Tissue-biomaterial Interactions. New York: John Wiley, 2002: 37-52.
[11]Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials,1999, 20(23/24): 2287-2303.
[12]Ducheyne P, Kim C S, Pollack S R. The effect of phase differences on the time-dependent variation of the zeta potential of hydroxyapatite. J. Biomed. Mater. Res., 1992, 26(2): 147-168.
[13]Kowalchuk R M, Pollack S R, Ducheyne P, et al. Particle microelectrophoresis of calcium-deficient hydroxyapatite: solution composition and kinetic effects. J. Biomed. Mater. Res., 1993, 27(6): 783-790.
[14]van der Veen M, Norde W, Stuart M C. Electrostatic interactions in protein adsorption probed by comparing lysozyme and succinylated lysozyme. Colloid. Surf. B, 2004, 35(1): 33-40.
[15]Yin G, Liu Z, Zhan J, et al. Impacts of the surface charge property on protein adsorption on hydroxyapatite. Chem. Eng. J., 2002, 87(2): 181-186.
[16]Zhu X D, Fan H S, Li D X, et al. Protein adsorption and zeta potentials of a biphasic calcium phosphate ceramic under various conditions. J. Biomed. Mater. Res. B, 2007, 82B(1): 65-73.
[17]Kawasaki T, Niikura M, Kobayashi Y. Fundamental study of hydroxyapatite high-performance liquid chromatography. III, direct experimental confirmation of the existence of two types of absorbing surface on the hydroxyapatite crystal. J. Chromatogr., 1990, 515: 125-148.
[18]Ohta K, Monma H, Takahashi S. Adsorption characteristics of proteins on calcium phosphates using liquid chromatography. J. Biomed. Mater. Res., 2001, 55(3): 409-414.
[19]Price R L, Ellison K, Haberstroh K M, et al. Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. J. Biomed. Mater. Res. A, 2004, 70A(1): 129-138.
[20]Suh C W, Kim M Y, Choo J B, et al. Analysis of protein adsorption characteristics to nano-pore silica particles by using confocal laser scanning microscopy. J. Biotechnol., 2004, 112(3): 267-277.
[21]Norde W, Giacomelli C E. BSA structural changes during homomolecular exchange between the adsorbed and the dissolved states. J. Biotechnol., 2000, 79(3): 259-268.
[22]Buijs J, Hlady V. Adsorption kinetics, conformation, and mobility of the growth hormone and lysozyme on solid surfaces, studied with TIRF. J. Colloid Interface Sci., 1997, 190(1): 171-181.
[23]Serro A P, Bastos M, Pessoa J C, et al. Bovine serum albumin conformational changes upon adsorption on titania and on hydroxyapatite and their relation with biomineralization. J. Biomed. Mater. Res. A, 2004, 70A(3): 420-427.
[24]Zeng H, Chittur K K, Lacefield W R. Analysis of bovine serum albumin adsorption on calcium phosphate and titanium surfaces. Biomaterials, 1999, 20(4): 377-84.