研究论文

有机-无机自组装制备类荷叶结构超疏水涂层及其性能研究

展开
  • (南京航空航天大学 材料科学与技术学院, 南京210016)

收稿日期: 2009-11-16

  修回日期: 2010-01-21

  网络出版日期: 2010-06-10

基金资助

国家自然科学基金(50871053)

Fabrication and Anticorrosion Property of Superhydrophobic Surfaces with Hierarchical Structure through an Organic-inorganic Self-assemble Process

Expand
  • (College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Received date: 2009-11-16

  Revised date: 2010-01-21

  Online published: 2010-06-10

摘要

g-氨丙基三乙氧基硅烷(硅烷偶联剂KH550)为连接剂, 利用硅氧烷水解形成硅羟基的自组装功能, 将聚四氟乙烯(PTFE)烧结形成的纳米级纤维与硅氧烷团聚的微米级粒子结合, 制备了具有类荷叶表面形貌的超疏水涂层, 其静态水接触角达152°, 滚动角约为5°. 通过扫描电镜观察涂层的表面微观形貌, 发现该涂层具有微/纳米二级结构. 利用Cassie方程, 探讨了表面微观结构和涂层疏水性能之间的关系. 用电化学交流阻抗谱(EIS)分析覆有涂层的试样在模拟腐蚀环境下的腐蚀行为, 结果表明该试样的腐蚀电流比裸钢片降低了3~4个数量级, 说明该涂层具有较好的防腐性能.

本文引用格式

狄志勇, 何建平, 周建华, 孙 盾, 王 涛 . 有机-无机自组装制备类荷叶结构超疏水涂层及其性能研究[J]. 无机材料学报, 2010 , 25(7) : 765 -769 . DOI: 10.3724/SP.J.1077.2010.00765

Abstract

A superhydrophobic surface was obtained by using g-aminopropyltriethoxylsilane (KH550) as a linker from organic-inorganic self-assemble process. By utilizing silane with amine functional group and Si-hydroxy functional group, bionic superhydrophobic surfaces with hierarchical microsphere/nanofiber structures were prepared on metal surfaces. The corrosion behavior of the composite film was investigated by electrochemicial impedance spectroscope (EIS). The maximal contact angle for water on the composite film is about 152°. Scanning electron microscope (SEM). Test result shows that the lotus-like film has microsphere/nanofiber hierarchical structure. The surface of the film forms a composite framework which plays an essential role in trapping air between the solid substrate and the liquid droplets to get high contact angle and low roll angle. Electrochemical corrosion measurements results indicate that the composite film has excellent corrosion protection for mild steel. The corrosion current of mild steel is nearly 1´104 times than that of the sample coated with the composite film, while the corrosion impedance increases dramatically. It suggests that the superdrophobic film has good corrosion resistance.

参考文献

[1]Nakajima A, Saiki C, Hashimoto K, et al. Processing of roughened silica film by colloidal silica for super-hydrophobic coating. J. Mater. Sci. Lett., 2001, 20(21): 1975-1977.
[2]Pilotek S, Schmidt H K. Wettability of microstructured hydrophobic Sol-Gel coatings. Journal of Sol-Gel and Technology, 2003, 26(1): 789-792.
[3]Shirtcliffe N J, McHale G, Newton M I, et al. Wetting and wetting transitions on copper-based super-hydrophobic surfaces. Langmuir, 2005, 21(3): 937-943.
[4]Wu Y, Bekke M, Moue Y, et al. Mechanical durability of ultrawater-repellent thin film with microwave plasma-enhanced CVD. Thin Solid Films, 2004, 457(1): 122-127.
[5]Liu H, Feng L, Zhai J, et al. Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity. Langmuir, 2004, 20(14): 5659-5661.
[6]Erbil Y H, Demirei A L, Avci Y, et al. Transformation of a simple plastic into a superhydrophobic surface. Science, 2003, 299(5611): 1377-1380.
[7]Song X, Zhai J, Wang Y, et al. Fabrication of superhydrophobic surfaces by self-assembly and their water-adhesion properties. J. Phys. Chem. B, 2005, 109(9): 4048-4052.
[8]Jung D H, Park I J, Choi Y K, et al. Perfluorinated polymer monolayers on porous silica for materials with super liquid repellentp roperties. Langmuir, 2002, 18(16): 6133-6139.
[9]Tadanaga K, Kitamuro K, Matsuda A, et al. Formation of superhydrophobic alumina coating films with high transparency on polymer substrates by the Sol-Gel method. Journal of Sol-Gel and Technology, 2003, 26(1): 705-708.
[10]Shang H M, Wang Y, Limmer S J, et al. Optically transparent superhydrophobic silica-based films. Thin Solid Films, 2005, 472(1): 37-43.
[11]Nakajima A, Abe K, Hashimoto K, et al. Preparation of hardsuper-hydrophobic films with visible light transmission. Thin Solid Films, 2000, 376(1): 140-143.
[12]Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces.Plant,1997, 202(1):1-8
[13]Kock K, Bhushan B, Jung Y C, et al. Fabrication of artificial lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Matter, 2009, 5: 1386-1393
[14]翟 锦, 李欢军, 李英顺, 等(ZHAI Jin, et al). 碳纳米管阵列超双疏性质的发现. 物理(Physics), 2002, 31(8): 483-485.
[15]Cassie A B D, Baxter S. Large contact angles of plant and animal surfaces. Nature, 1945, 155: 21-22.
[16]Luo Z Z, Zhang Z Z, Hu L T, et al. Stable bionic superhydrophobic coating surface fabricated by a conventional curing process. Advanced Materials, 2008, 20(5): 970-974.
[17]Michele M, Alessandro C, Luisa D M, et al. Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based Sol-Gel processing. Langmuir, 2009, 25(11): 6357-6362.
[18]曹楚南, 张鉴清. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 20-36.

文章导航

/