研究论文

有机-无机复合SiO2膜的制备及水蒸气稳定性能研究

展开
  • (南京工业大学 膜科学技术研究所, 材料化学工程国家重点实验室, 南京 210009)

收稿日期: 2009-11-09

  修回日期: 2010-01-31

  网络出版日期: 2010-06-10

基金资助

国家重点基础研究发展计划(2009CB623400); 国家自然科学青年基金(20906047); 材料化学工程联合国家重点实验室开放课题(SKL–ChE–09A01); 南京市留学回国人员基金

Preparation and Hydrothermal Stability of Organic-inorganic Hybrid Silica Membrane

Expand
  • (State Key Laboratory of Materials-oriented Chemical Engineering, Membrane Science and Technology Research Center, Nanjing University of Technology, Nanjing 210009, China)

Received date: 2009-11-09

  Revised date: 2010-01-31

  Online published: 2010-06-10

摘要

以1, 2-二(三乙氧基硅基)乙烷为前驱体, 通过溶胶-凝胶法合成出稳定的纳米复合SiO2溶胶, 采用浸浆法在具有g-Al2O3/α-Al2O3 结构的片状载体上涂膜, 然后在N2气氛下烧成得到完整无缺陷的有机-无机复合SiO2膜. 以TG/DSC、BET和气体渗透性能测试等手段对复合SiO2膜及粉体进行了表征. 该膜对小分子气体(He、CO2、O2、N2、CH4和SF6)的分离表现出分子筛分效应, 对He的渗透通量为(1.0~3.5)´10-7mol/(m2·s·Pa)(200℃, 0.3MPa). 500℃烧成的膜对He/CO2的理想分离因子为47, 远远高于Knudsen扩散时He/CO2的理想分离因子(3.3). 详细考察了烧成温度对膜水热稳定性的影响. 结果表明: 在450、500和550℃三个温度下烧成的膜水蒸气稳定条件(分压)分别为200、500和1000kPa.

本文引用格式

漆 虹, 韩 静, 江晓骆, 邢卫红, 范益群 . 有机-无机复合SiO2膜的制备及水蒸气稳定性能研究[J]. 无机材料学报, 2010 , 25(7) : 758 -764 . DOI: 10.3724/SP.J.1077.2010.00758

Abstract

A new organic-inorganic hybrid microporous membrane was prepared via Sol-Gel method with bridged silsesquioxane (1, 2-bis(triethoxysilyl)ethane, BTESE) as a precursor. Macroporous α-Al2O3 disk supported mesopo- rous γ-Al2O3 layer was used as support. Defect-free hybrid silica membrane was deposited on such support by using a stable nano-sized sol and subsequently calcining in pure nitrogen atmosphere. The hybrid SiO2 membrane as well as the powder was characterized by TG/DSC, BET and gas permeation. The hybrid silica membranes exhibit molecular sieve properties for small gases like He, CO2, O2, N2, CH4, and SF with helium permeance in the range of (1.0-3.5)´10-7mol/(m2·s·Pa)(at 200℃, 0.3MPa). Considering the membrane calcined at 500℃, it is found that the permselectivity of the He (0.255nm) with respect to CO2 (0.33nm) is 47, which is much higher than the corresponding Knudsen value (He/CO2=3.3). Effect of calcination temperature on hydrothermal stability of those microporous membranes was studied in detail. Results show that the performances of hybrid SiO2 membranes calcined at 450℃, 500℃ and 550℃ deteriorate under a H2O partial pressure of 200, 500 and 1000kPa, respectively.

参考文献

[1]Battersby S, Smart S, Ladewig B, et al. Hydrothermal stability of cobalt silica membranes in a water shift gas membrane reactor. Sep. Purif. Technol., 2009, 66(2): 299-305.
[2]Wei Q, Wang F, Nie Z R, et al. Highly hydrothermally stable microporous silica membranes for hydrogen separation. J. Phys. Chem. B, 2008, 112(31): 9354-9359.
[3]Ikuhara Y H, Mori H, Saito T, et al. High-temperature hydrogen adsorption properties of precursor-derived nickel nanoparticle- dispersed amorphous silica. J. Am. Ceram. Soc., 2007, 90(2): 546-552.
[4]Nomura M, Ono K, Gopalakrishnan S, et al. Preparation of a stable silica membrane by a counter diffusion chemical vapor deposition method. J. Membr. Sci., 2005, 251(1/2): 151-158.
[5]de Vos R M, Maier W F, Verweij H. Hydrophobic silica membranes for gas separation. J. Membr. Sci., 1999, 158(1/2): 277-288.
[6]Fotou G P, Lin Y S, Pratsinis S E. Hydrothermal stability of pure and modified microporous silica membranes. J. Mater. Sci., 1995, 30(11): 2803-2808.
[7]王艳丽, 于春晓, 邹景霞, 等. 增强微孔二氧化硅氢气分离膜疏水性的研究现状. 材料导报, 2006, 20(S2): 72-74.
[8]韦 奇, 李健林, 宋春林, 等(WEI Qi, et al). 憎水二氧化硅膜的制备、表征及水热稳定性研究. 无机材料学报(Journal of Inorganic Materials), 2004, 19(2): 417-423.
[9]Igi R, Yoshioka T, Ikuhara Y H, et al. Characterization of Co-doped silica for improved hydrothermal stability and application to hydrogen separation membranes at high temperatures. J. Am. Ceram. Soc., 2008, 91(9): 2975-2981.
[10]Tsuru T, Morita T, Shintani H, et al. Membrane reactor performance of steam reforming of methane using hydrogen-permselective catalytic SiO2 membranes. J. Membr. Sci., 2008, 316(1/2): 53-62.
[11]Kanezashi M, Yada K, Yoshioka T, et al. Design of silica networks for development of highly permeable hydrogen separation membranes with hydrothermal stability. J. Am. Chem. Soc., 2009, 131(2): 414-415.
[12]漆 虹, 邢卫红, 范益群(Qi Hong, et al). γ-Al2O3中孔陶瓷膜的制备及表征. 化工学报(CIESC Journal), 2009, 60(10): 2628-2632.
[13]Leboda R, Mendyk E, Gierak A, et al. Hydrothermal modification of silica gels (xerogels) 1. effect of treatment temperature on their porous structure. Colloids Surf. A: Physico. Eng. Asp., 1995, 105(2/3): 181-189.
[14]王艳丽, 韦 奇, 于春晓, 等(WANG Yan-Li, et al). 乙烯基修饰的微孔二氧化硅膜孔结构与疏水性研究. 无机材料学报(Journal of Inorganic Materials), 2007, 22(5): 949-953.
[15]de Vos R M, Verweij H. High-selectivity, high-flux silica membranes for gas separation. Science, 1998, 279(5357): 1710-1711.
[16]Gu Y F, Hacarlioglu P, Oyama S T. Hydrothermally stable silica– alumina composite membranes for hydrogen separation. J. Membr. Sci., 2008, 310(1/2): 28-37.
[17]Imai H, Morimoto H, Tominaga A , et al. Structural changes in Sol-Gel derived SiO2 and TiO2 films by exposure to water vapor. J. Sol-Gel Sci. Tech., 1997, 10(1): 45-54.
[18]Castricum H L, Sah A, Kreiter R, et al. Hybrid ceramic nanosieves: stabilizing nanopores with organic links. Chem.Commun., 2008(9): 1103-1105.
[19]Castricum H L, Sah A, Kreiter R, et al. Hydrothermally stable molecular separation membranes from organically linked silica. J. Mater. Chem., 2008, 18(18): 2150-2158.
[20]韦 奇, 李健林, 宋春林, 等(WEI Qi, et al). 微孔二氧化硅膜的制备、氢气分离以及水热稳定性研究. 无机材料学报(Journal of Inorganic Materials), 2004, 19(1): 133-139.

文章导航

/