立方氮化硼薄膜中的氧杂质
收稿日期: 2009-10-26
修回日期: 2009-12-15
网络出版日期: 2010-06-10
基金资助
国家自然科学基金(50772096)
Oxygen Impurity in Cubic Boron Nitride Thin Films Prepared by Plasma-enhanced Chemical Vapor Deposition
Received date: 2009-10-26
Revised date: 2009-12-15
Online published: 2010-06-10
采用等离子体增强化学气相生长技术制备立方氮化硼薄膜, 系统研究了背底真空度和生长过程中氧气的存在对立方氮化硼薄膜中氧杂质含量的影响. 发现把背底真空度提高至1×10-5 Pa仍然不能有效消除立方氮化硼薄膜中的氧杂质. 随着立方氮化硼薄膜中氧杂质的增加, 其红外吸收谱的Lorentz拟合发现, 在1230~1280 cm-1附近出现由氧原子与硼原子结合形成的B-O键的反对称伸缩振动引起的吸收峰. 该吸收峰的强度与薄膜中的氧杂质含量有较好的线性关系, 因此可以通过分析该吸收峰的强度半定量地测定立方氮化硼薄膜中的氧杂质含量.
关键词: 立方氮化硼薄膜; 等离子体增强化学气相生长; 红外光谱; 氧杂质
杨杭生, 邱发敏, 聂安民 . 立方氮化硼薄膜中的氧杂质[J]. 无机材料学报, 2010 , 25(7) : 748 -752 . DOI: 10.3724/SP.J.1077.2010.00748
Cubic boron nitride thin films were prepared by inductively-coupled plasma-enhanced chemical vapor deposition (ICP-CVD). The influences of base pressure and oxygen concentration on the content of oxygen impurity for cubic boron nitride film deposition were investigated. It was found that approximately 2% of oxygen impurity can still be detected in cubic boron nitride films even under a base pressure of up to 1×10-5Pa. Moreover, a new infrared (IR) absorption peak near 1230-1280 cm-1 was detected by Lorentzian-type curve fitting when the oxygen impurity content reached more than 3 at%. O1s core-level X-ray photoelectron spectroscopy (XPS) measurements confirmed the existence of B-O bond in boron nitride films. Therefore, this new peak could be attributed to the antisymmetric B-O stretching vibration of the trigonal BO3 group. Moreover, the intensity of this new peak was found to increase with oxygen impurity concentration linearly. Thus the oxygen impurity content in cubic boron nitride films could be evaluated quasi-quantitatively from the intensity of this new IR absorption peak.
[1]Vel L, Demazeau G, Etourneau J. Cubic boron nitride: synthesis, physicochemical properties and applications. Mater. Sci. Eng. B, 1991, 10(2): 149-164.
[2]Yoshida T. Vapor phase deposition of cubic boron nitride. Diamond Relat. Mater., 1996, 5(3/4/5): 501-507.
[3]Mirkarimi P B, McCarty K F, Medlin D L. Review of advances in cubic boron nitride film synthesis. Mater. Sci. Eng. R, 1997, 21(2): 47-100.
[4]张兴旺, 邹云娟, 严 辉, 等(ZHANG Xing-Wang, et al). B-C-N系超硬材料的研究进展. 无机材料学报(Journal of Inorganic Materials), 2000, 15(4): 577-583.
[5]张生俊, 陈光华(ZHANG Sheng-Jun, et al). 热丝辅助ECR CVD制备cBN薄膜. 无机材料学报(Journal of Inorganic Materials), 2003, 18(4): 947-950.
[6]张兴旺, 游经碧, 陈诺夫(ZHANG Xing-Wang, et al). 立方氮化硼薄膜制备与性能研究新进展. 无机材料学报(Journal of Inorganic Materials), 2007, 22(3): 385-390.
[7]杨杭生, 聂安民, 张健英(YANG Hang-Sheng, et al). 立方氮化硼薄膜的最新研究进展. 物理学报(Acta Physica Sinica), 2009, 58(2): 1364-1370.
[8]杨杭生(YANG Hang-Sheng). 等离子体增强化学气相沉积法制备立方氮化硼薄膜过程中的表面生长机理. 物理学报(Acta Physica Sinica), 2006, 55(08): 4238-4246.
[9]田晶泽, 吕反修, 夏立芳(TIAN Jing-Ze, et al). 脉冲直流偏压增强的高质量立方氮化硼薄膜的合成. 物理学报(Acta Physica Sinica), 2001, 50(11): 2258-2262.
[10]Matsumoto S, Zhang W J. High-rate deposition of high-quality, thick cubic boron nitride films by bias-assisted DC jet plasma chemical vapor deposition. Jpn. J. Appl. Phys., 2000, 39(5B): L442-L444.
[11]Yang H S, Iwamoto C, Yoshida T. High-quality cBN thin films prepared by plasma chemical vapor deposition with time-dependent biasing technique. Thin Solid Films, 2002, 407(1/2): 67-71.
[12]Zhang X W, Boyen H G, Deyneka N, et al. Epitaxy of cubic boron nitride on (001)-oriented diamond. Nature Mater., 2003, 2(5): 312-315.
[13]Zhang W J, Bello I, Lifshitz Y, et al. Epitaxy on diamond by chemical vapor deposition: a route to high-quality cubic boron nitride for electronic applications. Adv. Mater., 2004, 16(16): 1405-1408.
[14]Yang H S, Iwamoto C, Yoshida T. Interface engineering of cBN films deposited on silicon substrates. J. Appl. Phys., 2003, 94(2): 1248-1251.
[15]Yang H S, Iwamoto C, Yoshida T. Direct nucleation of cubic boron nitride on silicon substrate. Diamond Relat. Mater., 2007, 16(3): 642-644.
[16]杨杭生, 谢英俊(YANG Hang-Sheng, et al). 立方氮化硼薄膜生长过程中的界面控制. 物理学报(Acta Physica Sinica), 2007, 56(9): 5400-5407.
[17]Nose K, Tachibana K, Yoshida T. Rectification properties of layered boron nitride films on silicon. Appl. Phys. Lett., 2003, 83(5): 943-945.
[18]Nose K, Yang H S, Yoshida T. Electrical characterization of p-type cubic boron nitride/n-type silicon heterojunction diodes. Diamond Relat. Mater., 2005, 14(8): 1297-1301.
[19]Nose K, Oba H, Yoshida T. Electric conductivity of boron nitride thin films enhanced by in situ doping of zinc. Appl. Phys. Lett., 2006, 89(11): 112124-1-3.
[20]Nose K, Yoshida T. Semiconducting properties of zinc-doped cubic boron nitride thin films. J. Appl. Phys., 2007, 102(6): 063711-1-5.
[21]He B, Chen G H, Li Z Z, et al. P-BN/n-Si heterojunction prepared by beryllium ion implantation. Chin. Phys. Lett., 2008, 25(1): 219-222.
[22]He B, Zhang W J, Zou Y S, et al. Electrical properties of Be-implanted polycrystalline cubic boron nitride films. Appl. Phys. Lett., 2008, 92(10): 102108-1-3.
[23]Yin H, Pongrac I, Ziemann P. Electronic transport in heavily Si doped cubic boron nitride films epitaxially grown on diamond (001). J. Appl. Phys., 2008, 104(2): 023703-1-5.
[24]Yang H S, Nie A M, Qiu F M. Influence of oxygen on the growth of cubic boron nitride thin films by plasma-enhanced chemical vapor deposition. Chinese Physics B, 2010, 19(1): 017202-1-5.
[25]Ichiki T, Yoshida T. Preparation of cubic boron nitride films by low pressure inductively coupled plasma enhanced chemical vapor deposition. Appl. Phys. Lett., 1994, 64(7): 851-853.
[26]Sugino T, Tai T, Etou Y. Synthesis of boron nitride film with low dielectric constant for its application to silicon ultralarge scale integrated semiconductors. Diamond Relat. Mater., 2001, 10(3-7): 1375-1379.
[27]Ullmann J, Baglin J E E, Kellock A J. Effects of MeV Ion Irradiation of thin cubic boron nitride films. J. Appl. Phys., 1998, 83(6): 2980-2987.
[28]Yang H S, Zhang Y, Zhang X B, et al. Influence of the compressive stress on the infrared absorption of sp2-bonded boron nitride in cubic boron nitride thin films. Appl. Phys. Lett., 2007, 91(6): 061907-1-3.
[29]Garg K B, Chatterji T, Dalela S, et al. Core level photoemission study of polycrystalline MgB2. Solid State Commun., 2004, 131(5): 343-347.
[30]Zhang X W, Boyen H G, Yin H, et al. Microstructure of the intermediate turbostratic boron nitride layer. Diamond Relat. Mater., 2005, 14(9): 1474-1481.
[31]Pisarski W A, Gorvczka T, Wodecka-Dus B, et al. Structure and propertiesof rare-earth doped lead borate glasses. Mater. Sci. Eng. B, 2005, 122(2): 94-99.
[32]Schneider J R, Shrader B. Measurement and calculation of the infrared and raman active molecular and latice vibrations of the crystalline melamine (1,3,5-triamino-s-triazine). Mol. Struct., 1975, 29(1): 1-14.
[33]Nagai N, Imai T, Terada K, et al. Depth profile analysis of polyimide film treated by potassium hydroxide. Surf. Interface Anal., 2002, 33(7): 545-551.
[34]Ulrich S, Nold E, Sell K, et al. Constitution of thick oxygen- containing cubic boron nitride films. Surf. Coat. Technol., 2006, 200(22/23): 6465-6468.
[35]Lattemann M, Ulrich S, Ye J. New approach in depositing thick, layered cubic boron nitride coatings by oxygen addition - structural and compositional analysis. Thin Solid Films, 2006, 515(3): 1058-1062.
/
〈 | 〉 |