研究论文

电弧法制备石墨烯的孔结构和电化学性能研究

展开
  • (1. 北京科技大学, 北京 100191; 2. 北京大学 化学与分子工程学院, 北京 100871; 3. 防化研究院, 北京 102205)

收稿日期: 2009-11-16

  修回日期: 2009-12-24

  网络出版日期: 2010-06-10

基金资助

国家自然科学基金(20633040, 50902149)

Pore Structures and Electrochemical Properties of Graphene Prepared by Arc Discharge Method

Expand
  • (1. University of Science and Technology, Beijing 100191, China; 2. College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; 3. Research Institute of Chemical Defense, Beijing 102205, China)

Received date: 2009-11-16

  Revised date: 2009-12-24

  Online published: 2010-06-10

摘要

利用电弧法制备得到石墨烯(graphene)材料, 并对其孔结构和电化学性能进行了研究. 结果表明, 利用电弧法制得的石墨烯具有发达、开放的介孔结构, 比表面积为77.8 m2/g, 中孔率高达74.7%. 作为电化学电容器电极材料, 其在7 mol/L的KOH电解液中比电容为12.9 F/g, 大电流性能优异, 在200 mV/s下的循环伏安曲线仍为矩形, 交流阻抗谱的特征频率高达18.5 Hz, 体现出具有十分优异的倍率性能.

本文引用格式

吕 岩, 王志永, 张 浩, 房 进, 曹高萍, 施祖进, 王碧燕 . 电弧法制备石墨烯的孔结构和电化学性能研究[J]. 无机材料学报, 2010 , 25(7) : 725 -728 . DOI: 10.3724/SP.J.1077.2010.00725

Abstract

A graphene material was prepared by arc discharge method, and its pore structures and electrochemical capacitive properties were studied. The graphene presents developed and open mesopore structure, and its specific surface area and mesopore ratio are 77.8 m2/g and 74.7%, respectively. The electrochemical capacitor using graphene as electrode materials, has a capacitance of 12.9 F/g. Its cyclic voltammograms show rectangular shape even under a high scan rate of 200 mV/s, and the specific frequency f0 on the electrochemical impedance spectroscopy is as high as 18.5 Hz, exhibiting excellent rate capability.

参考文献

[1]江 奇, 瞿美臻, 张伯兰, 等(JIANG Qi, et al). 电化学超级电容器电极材料的研究进展. 无机材料学报(Journal of Inorganic Materials), 2002, 17(4): 649-656.
[2]Novoselov K S, Geum A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666-669.
[3]Yoo E, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Letters, 2008, 8(8): 2277-2282.
[4]Stankovich S, Dikin D A, Dommett G H B, et al. Graphene based composite materials. Nature, 2006, 442(7100): 282-286.
[5]Stankovich S, Dikin D A, Piner R D, et al. Synthesis ofgraphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558-1565.
[6]Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper. Nature, 2007, 448(7152): 457-460.
[7]Ruoff R. Calling all chemists. Nat. Nanotechnol., 2008, 3(1): 10-11.
[8]Li H J, Guan L H, Shi Z J, et al. Direct synthesis of high purity single-walled carbon nanotube fibers by arc discharge. J. Phys. Chem. B, 2004, 108(15): 4573-4575.
[9]Li N, Wang Z Y, Zhao K K, et al. Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon, 2010, 48(1): 255-259.
[10]Zhang H, Zhang W F, Cheng J, et al. Acetylene black agglomeration in activated carbon based electrochemical double layer capacitor electrodes. Solid State Ionics, 2008, 179(33/34): 1946-1950.
[11]Stoller M D, Park S, Zhu Y W, et al. Graphene-based ultracapacitors. Nano letters, 2008, 8(10): 3498-3502.
[12]Schniepp H C, Li J L, McAllister M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B, 2006, 110(17): 8535-8539.
[13]Conway B E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. New York: Plenum Publishers, 1999: 6-12.
[14]Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat. Mater., 2008, 7(11): 845-854.
[15]Zhang H, Cao G. P, Yang Y S. Electrochemical properties of ultra-long, aligned, carbon nanotube array electrode in organic electrolyte. J. Power Sources, 2007, 172(1): 476-480.

文章导航

/