纳米造粒料等离子喷涂氧化锆涂层的热物性研究
收稿日期: 2009-09-24
修回日期: 2009-12-01
网络出版日期: 2010-06-10
基金资助
Chine-France PRA dans ledomaine des mat é riaux 2002 under grant PRA MX02-03 (C.Coddet & C.Ding)
Thermophysical Properties of Air Plasma Sprayed Zirconia Coating Deposited by Reconstituted Nanosize Particles
Received date: 2009-09-24
Revised date: 2009-12-01
Online published: 2010-06-10
Supported by
Chine-France PRA dans ledomaine des mat é riaux 2002 under grant PRA MX02-03 (C.Coddet & C.Ding)
利用大气等离子喷涂技术和纳米粉体造粒料, 制备了3mol% Y2O3部分稳定ZrO2热障涂层. 利用扫描电镜(SEM)、透射电镜(TEM)研究了涂层的显微结构, 采用差示扫描量热仪(DSC)、激光脉冲法热导仪对涂层的热物理性能进行了实验研究和理论分析. 结果表明: 利用纳米粉体造粒料和等离子喷涂技术可获得导热系数为0.63~0.80W/(m·K)的热障涂层. 原因在于涂层显微结构中大量分布均匀的微小气孔和平均长度在十几微米的、垂直于热流方向的层状微裂纹. 相变可导致涂层热物性变化异常. 热处理后涂层的晶粒长大和气孔率降低可导致导热系数升高.
梁 波, 蔡 岸, 陈 煌, 丁传贤 . 纳米造粒料等离子喷涂氧化锆涂层的热物性研究[J]. 无机材料学报, 2010 , 25(7) : 695 -699 . DOI: 10.3724/SP.J.1077.2010.00695
ZrO2-3mol% Y2O3 coating was deposited by air plasma spraying using reconstituted nanosize particles. The microstructure was examined by SEM and TEM. The thermal conductivity was calculated based on the specific heat and thermal diffusivity detected by DSC and laser flash method. The results show that the thermal barrier zirconia coating with thermal conductivity ranging from 0.63-0.80 W/(m·K) is obtained. This can be attributed to the homogeneous distribution of micro-size pores and amounts of micro-cracks with average length of about 10 μm, to which heat flow is nearly perpendicular. The phase transition of t to m can result in the change of thermophysical properties. The grain growth and the decrease of porosity lead to increase of thermal conductiviy of as-sprayed coating.
[1]Padture N P, Gell M , Jordan E H. Thermal barrier coatings for gas-turbine engine applications. Science, 2002, 296(5566): 280-284.
[2]R-tzer-Scheibe H-J, Schulz U. The effects of heat treatment and gas atmosphere on the thermal conductivityof APS and EB-PVD PYSZ thermal barrier coatings. Surf. Coat. Tech., 2007, 201(18): 7880-7888.
[3]Brandon J R, Taylor R E. Thermal properties of ceria and yttria partially stabilized zirconia thermal barrier coatings. Surf. Coat. Tech., 1989, 39-40(part1): 143-151.
[4]Taylor R E, Wang X, Xu X. Thermophysical properties of thermal barrier coatings. Surf. Coat. Tech.,1999, 120-121: 89-95.
[5]Jang B K, Matsubara H. Influence of porosity on thermophysical properties of nano-porous zirconia coatings grown by electron beamphysical vapour deposition. Scripta. Mater., 2006, 54(9): 1655-1663.
[6]Cernuschi F, Ahmaniemi S, Vuoristo P, et al. Modelling of thermal conductivity of porous materials: application to thick thermal barrier coatings. J. Eur. Ceram. Soc., 2004, 24(9) : 2657-2667.
[7]Zhao H B, Yu F, Bennett T D, et al. Morphology and thermal conductivity of yttria-stabilized zirconia coatings. Acta Materialia, 2006, 54(19): 5195-5207.
[8]Klemens P G, Gell M. Thermal conductivity of thermal barrier coatings. Mater. Sci. Eng. A, 1998, 245(2):143-140.
[9]邓世均. 热障陶瓷涂层的最新发展. 材料保护, 2003, 36(3): 5-7.
[10]David R Clarke. Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Tech., 2003, 163--164: 67-74.
[11]He J H, Schoenung J M. Nanostructured coatings. Mater. Sci. Eng. A, 2002, 336(1/2): 274-319.
[12]Chen H, Zhou X M, Ding C X. Investigation of the thermomechanical properties of a plasma-sprayed nanostructured zirconia coating. J. Eur. Ceram. Soc., 2003, 23(9): 1449-1455.
[13]TouloukianY S, Buyco E H. Thermophysical Properties of Matter. The TPRC Data Series. 1970, 5: 293.
[14]Hasselman D P H , Johnson L F. Effective thermal conductivity of compositeswith interfacial thermal barrier resistance. J. Compos. Mater., 1987, 21: 508-515.
[15]Barabanenkov Y N, Ivanov V V, Ivanov S N, et al. The scattering of non-equilibrium phonons in Al2O3 nanoceramics. Physica B, 2002, 316-317: 269-272.
[16]Scott H G. Phase relationships in the zirconia system. J. Mater. Sci., 1975, 10(9): 1527-1535.
[17]Liang B, Ding C X. Thermal shock resistances of nanostructured and conventional zirconia coatings deposited by atmospheric plasma spraying. Surf. Coat. Tech., 2005, 191(2/3): 267-273.
/
〈 | 〉 |