研究论文

高性能PZT陶瓷双晶片制备及猫中耳拾音实验研究

展开
  • (1. 复旦大学 附属上海市眼耳鼻喉科医院, 上海200031; 2. 中国科学院 上海硅酸盐研究所, 上海200050;                      3. 攀特电陶科技研发有限公司, 昆山211138)

收稿日期: 2009-11-11

  修回日期: 2009-12-22

  网络出版日期: 2010-06-10

基金资助

上海市科学技术委员会重点项目(06DZ22022, 08441900300); 复旦大学研究生创新基金; 短期国际访学资助项目

Fabrication of High Acoustic-Electric Efficient Piezoelectric Ceramic Bimorph Element and Pickup in Middle Ear of Cat

Expand
  • (1. Shanghai Eye & ENT hospital, Fudan Univeristy, Shanghai 200031, China; 2. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 3. Pante Electronic ceramic R&D center co. Ltd., Kunsan 211138, China)

Received date: 2009-11-11

  Revised date: 2009-12-22

  Online published: 2010-06-10

摘要

制备横向压电系数d31高达-480pC/N和居里温度Tc达280℃的高性能PZT压电陶瓷材料, 再制成厚0.3mm、宽1.0mm和长度分别为3.5、4.0和4.5mm的压电双晶片(PCBE), 结合前置放大器制成声电换能器, 将其植入猫耳内并测试PCBE耦合于听骨链上的声学信号拾取能力. 结果表明: 制备的PCBE具有良好的声?电换能性能; 三种长度的PCBE均可全部植入猫耳鼓室, 拾取体外20~20000Hz声信号可获得较平坦的频响曲线, 长度为4.5mm的PCBE拾取信号最佳, 最大输出达-13.16 dB(0dB输入, 1.5 kHz时). 证实PZT压电双晶片可以制成鼓室内全植入式传声器.

本文引用格式

康厚墉, 吴拥真, 迟放鲁, 郭少波, 高 娜, 潘铁政 . 高性能PZT陶瓷双晶片制备及猫中耳拾音实验研究[J]. 无机材料学报, 2010 , 25(7) : 691 -694 . DOI: 10.3724/SP.J.1077.2010.00691

Abstract

A novel PZT piezoelectric ceramics with high d31 (-480pC/N) and Tc (280℃) was developed to shape a long strip of piezoelectric ceramic bimorph element (PCBE), with 0.3 mm in thickness, 1.0 mm in width and three lengths (3.5, 4.0, 4.5 mm), which were assembled to the cantilever structure anchoring a Preamplifier, and were implanted totally into tympanic cavity of cat ear to analyze their ability of picking up acoustic signal. This study explores that the PCBEs have high efficient acoustic-electric performance. They can pick up 20-20000Hz acoustic signal with an approximate flat frequency curve when they are implanted the tympanic cavity of cat. The maximal output of -13.16 dB Volt p-p value (@1.5kHz, 0dB input) is picked up by the 4.5mm PCBE. This validates that PCBE might be totally implanted into tympanic cavity of cat ear as a piezoelectric microphone.

参考文献

[1]Wang S, Li J F, Wakabayashi K, et al. Lost silicon mold process for PZT microstructures. Adv. Mater., 1999, 11(10): 873-876.
[2]Haertling G H. Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc., 1999, 82(4): 797-818.
[3]Damjanovic D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys., 1998, 61(9): 1267-1324.
[4]董人禾, 董显林, 鲁 飞, 等 (DONG Ren-He, et al). 压电型人工耳蜗的实验研究. 无机材料学报(Journal of Inorganic Materials), 2002, 17(4): 862-866.
[5]陈 恒, 董显林, 鲁 飞, 等 (CHEN Hen, et al). 基于压电效应的人工耳蜗的实验研究. 无机材料学报(Journal of Inorganic Materials), 2007, 22(1): 185-188.
[6]迟放鲁, 严庆波. 可植入式传声器在全植入式电子耳蜗中的研究. 中华耳鼻咽喉科杂志, 2003, 38(3): 237-238.
[7]Chi F L, Wu Y, Yan Q B, et al. Sensitivity and fidelity of a novel piezoelectric middle ear transducer. ORL, 2009, 71(4): 216-220.
[8]Cohen N. The totally implantable cochlear implant. Ear Hear, 2007, 28(Supp l2): 100S-101S.
[9]Zhang H, Jiang S, Zeng Y. B site doping effect on depinning in Pb(Mn1/3Nb1/3Sb1/3)x(Zr0.825Ti0.175)1–xO3 ferroelectric ceramics. Appl. Phys. Lett., 2008, 93(19): 192901-1-3.
[10]王永龄. 功能陶瓷性能与应用. 北京: 科学出版社. 2003: 98-101.
[11]Majdoub M S, Sharma P, Cagin T. Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures. Phys. Rev. B, 2008, 78(12): 121407-1-4.
[12]Fang H, Liu L, Ren T. Modeling and design optimization of large-deflection piezoelectric folded cantilever microactuators. IEEE Trans Ultrason, 2006, 53(1): 237-240.
[13]Zürcher M A, Young D J, Semaan M, et al. Effect of Incus Removal on Middle Ear Acoustic Sensor For a Fully Implantable Cochlear Prosthesis. Conf. Proc. IEEE Eng. Med. Biol. Soc. ,New York, 2006, 1: 539-542.
[14]Afridi M, Hefner A, Berning D, et al. MEMS-based embedded sensor virtual components for system-on-a-chip (SoC). Solid-State Electronics, 2004, 48(10/11): 1777-1781.

文章导航

/