Ba1-xSrxTiO3陶瓷电畴的压电响应力显微研究
收稿日期: 2009-10-23
修回日期: 2009-12-01
网络出版日期: 2010-06-10
基金资助
国防基础科研项目(D1420060174)
Piezoresponse Force Microscopy Studies of Domain in Ba1-xSrxTiO3 Ceramics
Received date: 2009-10-23
Revised date: 2009-12-01
Online published: 2010-06-10
采用常规固相反应法制备了Ba1-xSrxTiO3(x=0.7, 0.4, 0.1)陶瓷, 利用扫描力显微镜的压电响应模式得到了压电响应像, 并观察到了外加直流电压时的电畴诱导和极化反转. 在10V电压下(样品厚90μm, 下同), 室温时顺电体Ba0.6Sr0.4TiO3中诱导出了铁电畴, 而顺电体Ba0.3Sr0.7TiO3中并未诱导出铁电畴. 12V和–12V电压下, Ba0.9Sr0.1TiO3中的电畴发生了明显的极化反转. 对x=0.4、0.1的样品使用透射电子显微镜进行观察, 发现室温下前者无电畴, 进一步验证了压电响应图像的结果; 后者有电畴, 且为鱼刺状的畴结构. 同时对顺电相Ba1-xSrxTiO3材料中非线性介电特性的起源进行了探讨.
何建平, 吕文中, 汪小红, 王 雨, 胡永明 . Ba1-xSrxTiO3陶瓷电畴的压电响应力显微研究[J]. 无机材料学报, 2010 , 25(7) : 683 -686 . DOI: 10.3724/SP.J.1077.2010.00683
The character of the domain structures in Ba1-xSrxTiO3(x=0.7, 0.4, 0.1) ceramics prepared by the solid-state reaction was investigated by piezoresponse force microscope (PFM) and transmission electron microscope (TEM). The PFM results indicate that the domains are induced in paraelectric phase Ba0.6Sr0.4TiO3 under 10V dc voltage applied between the tip and the bottom electrode. However, no domain appears in paraelectric phase Ba0.3Sr0.7TiO3 under the same external voltage. The polarization reversal occurs in Ba0.9Sr0.1TiO3 after application of 12V and –12V dc bias voltage. Furthermore, the TEM images show that no domain is found in Ba0.6Sr0.4TiO3, while the herringbone domain structure is found in Ba0.9Sr0.1TiO3. The mechanism of nonlinear dielectric properties of paraelectric phase Ba1-xSrxTiO3 ceramic is also discussed.
[1]Lemanov V V, Smirnova E P, Syrnikov P P, et al. Phase transitions and glasslike behavior in Sr1-xBaxTiO3. Phys. Rev. B, 1996, 54(5): 3151-3157.
[2]Lemanov V V. Concentration dependence of phonon mode frequencies and the Grüneisen coefficients in BaxSr1-xTiO3 solid solutions. Phys. Solid State, 1997, 39(2): 318-322.
[3]Kuo S Y, Liao W Y, Hsieh W F. Structural ordering transition and repulsion of the giant LO-TO splitting in polycrystalline BaxSr1-xTiO3. Phys. Rev. B, 2001, 64(22): 224103-1-7.
[4]Sengupta L C, Ngo E, Stowell S, et al. Investigation of the electric properties of doped Ba1-xSrxTiO3 phase shifting materials. Ferroelectrics, 1994, 153(1): 359-364.
[5]Kageyama K, Takahashi J. Tunable microwave properties of barium titanate-based ferroelectric glass-ceramics. J. Am. Ceram. Soc., 2004, 87(8): 1602-1605.
[6]Wang X H, Lu W Z, Liu J, et al. Effects of La2O3 additions on properties of Ba0.6Sr0.4TiO3-MgO ceramics for phase shifter applications. J. Eur. Ceram. Soc., 2006, 26(10/11): 1981-1985.
[7]Ioachim A, Toacsan M I, Banciu M G, et al. Barium strontium titanate-based perovskite materials for microwave applications. Prog. Solid State Chem., 2007, 35(2/3/4): 513-520.
[8]Chou X J, Zhai J W, Yao X. Dielectric tunable properties of low dielectric constant Ba0.5Sr0.5TiO3-Mg2TiO4 microwave composite ceramics. Appl. Phys. Lett., 2007, 91(12): 122908-1-3.
[9]Radhapiyari L, Thakur O P, Prakash C. Structural and dielectric properties of the system Ba1-xSrxFe0.01Ti0.99O3. Mater. Lett., 2003, 57(12): 1824-1829.
[10]梁瑞虹, 董显林, 陈 莹, 等(LIANG Rui-Hong, et al). 直流偏置电场下BaTiO3 基陶瓷介电常数非线性机理的研究. 物理学报(Acta Physica Sinica), 2005, 54(10): 4914-4919.
[11]Liang R H, Dong X L, Chen Y, et al. Dielectric properties and tunability of Ba(ZrxTi1-x)O3 ceramics under high DC electric field. Ceram. Int., 2007, 33(6): 957-961.
[12]Zhang J J, Zhai J W, Zhang M W, et al. Structure-dielectric properties relationship in Mg-Mn co-doped Ba0.4Sr0.6TiO3/MgAl2O4 tunable microwave composite ceramics. J. Phys. D: Appl. Phys., 2009, 42(7): 075414-1-6.
[13]Li F, Xu Z, Wei X Y, et al. Domain switching contribution to piezoelectric response in BaTiO3 single crystals. Appl. Phys. Lett., 2008, 93(19): 192904-1-3.
[14]Eng L M, Güntherodt H J, Schneider G A, et al. Nanoscale reconstruction of surface crystallography from three-dimensional polarization distribution in ferroelectric barium–titanate ceramics. Appl. Phys. Lett., 1999, 74(2): 233-235.
[15]Vasudevarao A, Kumar A, Tian L, et al. Multiferroic domain dynamics in strained strontium titanate. Phys. Rev. Lett., 2006, 97(25): 257602-1-4.
[16]Chen H W, Yang C R, Fu C L, et al. Ferroelectric and microstructural characteristics of Ba0.6Sr0.4TiO3 thin films prepared by RF magnetron sputtering. Mater. Sci. Eng. B, 2005, 121(1/2): 98-102.
[17]Fu C L, Yang C R, Chen H W, et al. Domain configuration and dielectric properties of Ba0.6Sr0.4TiO3 thin films. Appl. Surf. Sci., 2005, 252(2): 461-465.
[18]Gruverman A, Auciello O, Tokumoto H. Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy. Annu. Rev. Mater. Sci., 1998, 28: 101-123.
[19]Wong K S, Zhao X, Dai J Y, et al. Study of domain boundary polarization in (111)-cut [Pb(Mg1/3Nb2/3)O3]0.7(PbTiO3)0.3 single crystal by piezoresponse force microscopy. Appl. Phys. Lett., 2006, 89(9): 092906-1-3.
[20]Gruverman A, Kholkin A, Kingon A, et al. Asymmetric nanoscale switching in ferroelectric thin films by scanning force microscopy. Appl. Phys. Lett., 2001, 78(18): 2751-2753.
[21]Diamond H. Variation of permittivity with electric field in perovskite-like ferroelectrics. J. Appl. Phys., 1961, 32(5): 909-915.
[22]Arlt G, Sasko P. Domain configuration and equilibrium size of domains in BaTiO3 ceramics. J. Appl. Phys., 1980, 51(9): 4956-4960.
[23]Chou J F, Lin M H, Lu H Y. Ferroelectric domains in pressureless-sintered barium titanate. Acta Mater., 2000, 48(13): 3569-3579.
[24]Zhang Z H, Qi X Y, Duan X F. Direct determination of the polarization direction of domains in BaTiO3 single crystal. Appl. Phys. Lett., 2006, 89(24): 242905-1-3.
/
〈 | 〉 |