综述

铌镁酸铅基弛豫铁电厚膜的研究进展

展开
  • (1. 西安建筑科技大学 材料学院, 西安710055; 2. 西北工业大学 材料学院, 西安710072)

收稿日期: 2009-11-16

  修回日期: 2010-01-28

  网络出版日期: 2010-06-10

基金资助

西安建筑科技大学人才科技基金(RC0934); 陕西省重点学科建设专项基金; 濮耐教育奖学金

Researches and Developments of PMN-based Relaxor Ferroelectric Thick Film

Expand
  • (1. School of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; 2. State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China)

Received date: 2009-11-16

  Revised date: 2010-01-28

  Online published: 2010-06-10

摘要

铌镁酸铅(Pb(Mg1/3Nb2/3)O3, 简称PMN)基弛豫铁电厚膜材料及器件因其具有良好的电学性能而成为近年来研究热点. 本文分别从丝网印刷技术、复合溶胶?凝胶法(Sol-Gel)、流延法、电泳沉积法和水热法等五个方面, 归纳和分析了近年来PMN基弛豫铁电厚膜的研究进展. 然而, PMN基厚膜电学性能及其内在物理机制的研究相对滞后. 今后的研究重点将集中在厚膜的低温制备、物理机制的探究以及新器件的开发上, 并为研究新型高性能的无铅型高性能弛豫铁电厚膜打下良好的基础.

本文引用格式

陈 晋, 樊慧庆 . 铌镁酸铅基弛豫铁电厚膜的研究进展[J]. 无机材料学报, 2010 , 25(7) : 673 -677 . DOI: 10.3724/SP.J.1077.2010.00673

Abstract

The thick films and devices of PMN-based relaxor ferroelectric have attracted considerable attentions because they have excellent electric properties. In this paper, the research progress and trend of PMN-based thick films are summarized with emphases on screen printing, composite Sol-Gel, tape-casting, electrophoretic deposition and hydrothermal method. On the other hand, relatively slow progress was achieved in theoretical studies aimed in explaining the relaxor ferroelectric properties and the relaxor mechanism of the PMN-based thick film. Therefore, future works should involve in the low-temperature fabricating process, the physical mechanism and the new devices, which can be applied to new-type lead-free relaxor ferroelectric thick films with excellent properties.

参考文献

[1]Cross L E. Relaxor ferroelectrics. Ferroelectrics, 1987, 76(1): 241-267.
[2]Ye Zuo-Guang. Relaxor ferroelectric Pb(Mg1/3Nb2/3)O3: properties and present under-standing. Ferroelectrics, 1996, 184(1): 193-208.
[3]Bokov A A, Ye Z G. Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci., 2006, 41(1): 31-52.
[4]Cross L E. Relaxor ferroelectrics: an overview. Ferroelectrics, 1994, 151(1): 305-320.
[5]李龙土(LI Long-Tu). 弛豫铁电陶瓷的研究进展. 硅酸盐学报(Journal of the Chinese Ceramic Society), 1992, 20(5): 476-483.
[6]Newman R E, Ruschau G R. Smart electroceramics. J. Am. Ceram. Soc., 1991, 74(3): 463-480.
[7]Liu A Y, Meng X J, Xue J Q, et al. Electrical and optical properties of Pb(Mg1/3Nb2/3)O3- PbTiO3 thin films prepared by chemical solution deposition. Appl. Phys. Lett., 2005, 87(7): 072903-1-3.
[8]Randall C A, Bhalla A S, Shrout T R, et al. Classification and consequences of complex lead perovskite ferroelectrics with regard to B-site cation order. J. Mater. Res., 1990, 5(4): 829-834.
[9]Szwagierczak D, Kulawik J. Thick film capacitors with relaxor dielectrics. J. Eur. Ceram. Soc., 2004, 24(7): 1979-1985.
[10]Gentil S, Damjanovic D, Setter N. Pb(Mg1/3Nb2/3)O3 and (1-x)Pb(Mg1/3Nb2/3)O3 -xPbTiO3 relaxor ferroelectric thick films: processing and electrical characterization. J. Electroceram., 2004, 12(3): 151-161.
[11]Gentil S, Damjanovic D, Setter N. Development of relaxor ferroelectric materials for screen-printing on alumina and silicon substrates. J. Eur. Ceram. Soc., 2005, 25(12): 2125-2128.
[12]Kosec M, Holc J, Kuscer D, et al. Pb(Mg1/3Nb2/3)O3-PbTiO3 thick films from mechanochemically synthesized powder. J. Eur. Ceram. Soc., 2007, 27(13/14/15): 3775-3778.
[13]Wu A Y, Vilarinho P M, Kholkin A. Low temperature preparation of ferroelectric relaxor composite thick films. J. Am. Ceram. Soc., 2007, 90(4): 1029-1037.
[14]Shih W Y, Luo H Y, Li H D, et al. Sheet geometry enhanced giant piezoelectric coefficients. Appl. Phys. Lett., 2006, 89(24): 242913-1-3.
[15]Chen J, Fan H Q, Chen X L, et al. Fabrication of pyrochlore-free PMN-PT thick films by electrophoretic deposition. J. Alloys Compd., 2009, 471(1/2): L51-L53.
[16]Chen J, Fan H Q, Ke S M, et al. Relaxor behavior and dielectric properties of lead magnesium niobate-lead titanate thick films prepared by electrophoresis deposition. J. Alloys Compd., 2009, 478(1/2): 853-857.
[17]Chen X L, Fan H Q, Liu L J, et al. Low-temperature growth of lead magnesium niobate thick films by a hydrothermal process. Ceram. Int., 2008, 34(4): 1063-1066.
[18]董金美, 沈建兴, 李传山, 等. PZT压电厚膜的发展及其应用. 中国陶瓷, 2007, 43(8): 3-6.
[19]Vilarinho P M, Wu A Y, Kholkin A. Method for Producing Composite Thick Ceramic Films by Sedimentation and Infiltration of Sol-Gel Solution. Portuguese Patent, 102909. 2005.
[20]夏冬临, 刘梅冬, 曾亦可, 等(XIA Dong-Lin, et al). 新型Sol-Gel技术制备PZT铁电厚膜的制备及电学性能研究. 无机材料学报(Journal of Inorganic Materials), 2001, 16(6): 1156-1160.
[21]Nieto E, Fernandez J F, Moure C, et al. Multilayer piezoelectric devices based on PZT. J. Mater. Sci. Mater. Electron, 1996, 7(1): 55-60.
[22]Yoon D H, Lee B I. Processing of barium titanate tapes with different binders for MLCC applications-part I: optimization using design of experiments. J. Eur. Ceram. Soc., 2004, 24(5): 739-752.
[23]Sarker P, Nicholson P S. Electrophoretic deposition (EPD): mechanisms kinetics and application to ceramic. J. Am. Ceram. Soc., 1996, 79(8): 1987-2002.
[24]Ogata N, Tassel J V, Randall C A. Electric formation by electrophoretic deposition of nanopowders. Mater. Lett., 2001, 49(5): 7-14.
[25]Zhang L, Zhai J W, Yao X. Dielectric properties of electrophoretically deposited and isothermally pressed BaTiO3 thick films. J. Am. Ceram. Soc., 2008, 91(6): 2075-2077.
[26]陈秀丽. 复合钙钛矿铌酸盐材料的制备、结构及其电学性能研究. 西安: 西北工业大学博士论文, 2009.
[27]Takeuchi Y, Kimura K. Method of producing a piezoelectric/ electrostrictive actuator. US Patent, 5681410. 1997.07.01.
[28]Ursic H, Hrovat M, Holc J, et al. A large-displacement 65Pb(Mg1/3Nb2/3)O3-35PbTiO3/Pt bimorph actuator prepared by screen printing. Sensors and Actuators B: Chemical, 2008, 133(2): 699-704.
[29]Hall A, Akdogan E K, Safari A. Fatigue properties of piezoelectric- electrostrictive Pb(Mg1/3Nb2/3)O3-PbTiO3 monolithic bilayer composites. J. Appl. Phys., 2006, 100(9): 094105-1-7.
[30]杜红亮, 张 孟, 苏晓磊, 等(DU Hong-Liang, et al). 压电陶瓷晶粒取向生长技术的研究进展. 无机材料学报(Journal of Inorganic Materials), 2008, 23(1): 1-7.
[31]Brosnan K H, Poterala S F, Meyer R J, et al. Templated grain growth of <001> textured PMN-28PT using SrTiO3 templates. J. Am. Ceram. Soc., 2009, 92(S1): S133-S139.
[32]Sabolsky E M, James A R, Kwon S, et al. Piezoelectric properties <001> textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. Appl. Phys. Lett., 2001, 78(17): 2551-2554.
[33]Amorin H, Santacruz I, Holc J, et al. Tape-casting performance of ethanol slurries for the processing of textured PMN-PT ceramics from nanocrystalline powder. J. Am. Ceram. Soc., 2009, 92(5): 996-1001.
[34]Messing G L, Trolier-Mckinstry S, Sabolsky E M, et al. Templated grain growth of textured piezoelectric ceramics. Critical Reviews in Solid State and Materials, 2004, 29(2): 45-96.
[35]Pham-Thi M, Hemery H, Dammak H. X-Ray investigation of high oriented (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 ceramics. J. Eur. Ceram. Soc., 2005, 25(12): 2433-2437.
[36]Richter T, Denneler S, Schuh C, et al. Textured PMN-PT and PMN-PZT. J. Am. Ceram. Soc., 2008, 91(3): 929-933.
文章导航

/