研究论文

低维纳米立方相Li4Mn5O12的制备及锂吸附性能

  • 孙淑英 ,
  • 张钦辉 ,
  • 于建国
展开
  • (华东理工大学 化学工程联合国家重点实验室, 上海 200237)

收稿日期: 2009-09-16

  修回日期: 2009-11-05

  网络出版日期: 2010-05-12

基金资助

国家自然科学基金(20906022); 上海市科委纳米专项基金(0852nm021)

Preparation and Lithium Adsorption Properties of Low-dimensional Cubic Li4Mn5O12 Nanostructure

  • SUN Shu-Ying ,
  • ZHANG Qin-Hui ,
  • YU Jian-Guo
Expand
  • (State Key Lab of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China)

Received date: 2009-09-16

  Revised date: 2009-11-05

  Online published: 2010-05-12

摘要

以MnSO4H2O和(NH4)2S2O8为原料通过控制水热反应条件合成了纯的四方相β-MnO2纳米氧化物, 进一步通过低温固相法制备了立方相Li4Mn5O12, 经酸浸脱锂后得到对Li+具有特殊选择性的MnO2离子筛. 用XRD、HRTEM、SAED、吸附等温线、吸附动力学及共存金属离子的分配系数等手段对产物的晶相结构和Li+选择性吸附性能进行了研究. HRTEM和SAED图像表明氧化物MnO2、前驱体Li4Mn5O12和离子筛MnO2均为低维纳米棒. 离子筛的最大吸附量达到6.6 mmol/g, 且当Li+初始浓度仅为5.0 mmol/L时, 离子筛的吸附量即可达到约5.0 mmol/g, 这对于在海水或锂离子浓度极低的盐湖卤水提锂具有重要的实用意义.

关键词: 低维; 离子筛; Li4Mn5O12; 吸附;

本文引用格式

孙淑英 , 张钦辉 , 于建国 . 低维纳米立方相Li4Mn5O12的制备及锂吸附性能[J]. 无机材料学报, 2010 , 25(6) : 626 -630 . DOI: 10.3724/SP.J.1077.2010.00626

Abstract

Pure β-MnO2 oxide was synthesized by hydrothermal synthesis of MnSO4H2O and (NH4)2S2O8. Spinel-type Li4Mn5O12 precursors were synthesized via low temperature solid-phase reaction. Furthermore, MnO2 ion-sieves with Li+ selective adsorption property were prepared by the acid treatment process to completely extract Li+ from the spinel Li4Mn5O12 precursor. The effects of hydrothermal and solid-phase reaction process on the nanostructure, chemical stability and ion-exchange property of the ion-sieve material were examined with XRD, HRTEM, SAED, and Li+ selective adsorption measurements. The results show that Li4Mn5O12 precursor and final MnO2 ion-sieve are effectively controlled within low-dimensional structure, indicating that low temperature solid-phase reaction is more favorable to control the nanocrystalline structure than traditional high-temperature calcination process. The Li+ selective adsorption capacity is improved remarkably to 6.6 mmol/g at equilibrium and about 5.0 mmol/g at the initial Li+ concentration of only 5.0 mmol/L, which is significant for lithium extraction from aqueous solutions with very low lithium content.

参考文献

[1]Berg H, Rundlov H, Thomas J O. The LiMn2O4 to λ-MnO2 phase transition studied by in situ neutron diffraction. Solid State Ionics, 2001, 144(1/2): 65-69.

[2]Shaju K M, Bruce P G. A stoichiometric nano-LiMn2O4 spinel electrode exhibiting high power and stable cycling. Chem. Mater., 2008, 20(17): 5557-5562.

[3]Koyanaka H, Matsubaya O, Hatta N. Quantitative correlation between Li absorption and H content in manganese oxide spinel λ-MnO2. J. Electroanal. Chem., 2003, 559(45-48): 77-81.

[4]Sato K, Poojary D M, Clearfield A. The surface structure of the proton-exchanged lithium manganese oxide spinels and theirlithium-ion sieve properties. J. Solid State Chem., 1997, 131(1): 84-93.

[5]Zhang Q H, Sun S Y, Li S P, et al. Adsorption of lithium ions on novel nanocrystal MnO2. Chem. Eng. Sci., 2007, 62(18/19/20): 4869-4874.

[6]纪志永, 袁俊生, 李鑫钢. 锂离子筛的制备及其交换性能研究.离子交换与吸附,2006, 22(4):323-332

[7]赵丽丽, 王榕树(ZHAO Li-Li, et al). 锂离子交换剂制备及交换反应动力学. 物理化学学报(Acta Phys-Chim. Sin.), 2003, 19(10): 933-993.

[8]Feng Q, Kanoh H, Ooi K. Manganese oxide porous crystals. J. Mater. Chem., 1999, 9: 319-333.

[9]Feng Q, Miyai Y, Kanoh H, et al. Li+ extraction/insertion with spinel-type lithium manganese oxides. Characterization of redox- type and ion-exchange-type sites. Langmuir, 1992, 8(7): 1861-1867.

[10]Ooi K, Miyai Y, Sakakihara J. Mechanism of Li+ insertion in spinel-type manganese oxide. Redox and ion-exchange reactions. Langmuir, 1991, 7(6): 1167-1171.

[11]Chitrakar R, Kanoh H, Miyai Y, et al. A new type of manganese oxide (MnO2·05H2O) derived from Li1.6Mn1.6O4 and its lithium ion-sieve properties. Chem. Mater., 2000, 12(10): 3151-3157.
文章导航

/