研究论文

水热合成Sb2Se3纳米线及其对Bi2Te3纳米粉末热电性能的影响

  • 张艳华1 ,
  • 2 ,
  • 徐桂英1 ,
  • 郭志敏2 ,
  • 韩 菲1 ,
  • 王 泽1 ,
  • 葛昌纯1
展开
  • (1. 北京科技大学 特种陶瓷与粉末冶金研究所, 北京新能源材料重点实验室, 北京100083; 2. 装备指挥技术学院 士官系, 北京102249)

收稿日期: 2009-10-14

  修回日期: 2009-12-03

  网络出版日期: 2010-05-12

Effects of Hydrothermaly Synthesized Sb2Se3 Nanowires on the Thermoelectric Properties of Bi2Te3 Nanopowders

  • ZHANG Yan-Hua1 ,
  • 2 ,
  • XU Gui-Ying1 ,
  • GUO Zhi-Min2 ,
  • HAN Fei1 ,
  • WANG Ze1 ,
  • GE Chang-Chun1
Expand
  • (1. Institute of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; 2. Academy of Equipment Command & Technology, Beijing 102249, China)

Received date: 2009-10-14

  Revised date: 2009-12-03

  Online published: 2010-05-12

摘要

以SbCl3和Se粉为原料, 水合肼(N2H4·H2O)为还原剂, 采用水热法在150℃下, 分别保温不同的时间合成Sb2Se3纳米粉末. 通过X射线衍射(XRD)、场发射电子扫描电镜(FESEM)、透射电镜(TEM)以及高分辨透射电镜(HRTEM)等分析方法对产物的物相成分和微观形貌等进行了表征, 实验结果表明保温时间达到24h时, 获得产物为单相Sb2Se3纳米线晶体. 根据实验结果还研究了水热合成Sb2Se3纳米线晶体可能的反应及生长机理, 结果表明一维纳米线沿[001]方向生长, 纳米线的形成与其独特的层状晶体结构有关. 最后采用放电等离子体快速热压烧结法将水热合成的Bi2Te3纳米粉末与不同含量Sb2Se3纳米线进行复合, 分析了Sb2Se3纳米线对Bi2Te3纳米材料热电性能的影响, 发现复合约1 at% Sb2Se3纳米线可以使Bi2Te3纳米材料热电性能有一定提高.

本文引用格式

张艳华1 , 2 , 徐桂英1 , 郭志敏2 , 韩 菲1 , 王 泽1 , 葛昌纯1 . 水热合成Sb2Se3纳米线及其对Bi2Te3纳米粉末热电性能的影响[J]. 无机材料学报, 2010 , 25(6) : 615 -620 . DOI: 10.3724/SP.J.1077.2010.00615

Abstract

Sb2Se3 nanowires were synthesized by a hydrothermal method at 150℃ for 3, 6,12 and 24 h using SbCl3 and Se powder as the precursors, N2H4·H2O as reductant. X-ray diffraction (XRD), transmission electron microscope (TEM), field emission scanning electron microscope (FESEM) and high-resolution TEM (HRTEM) were applied to analyze the phase distributions, microstructures and grain sizes of the nanostructured Sb2Se3. It was found that the pure orthorhombic Sb2Se3 nanowires were formed at 150℃ for 24h by the hydrothermal synthesis method. The reaction mechanism and crystal growth mechanism of Sb2Se3 nanowires were investigated in the light of the experimental results. The Sb2Se3 nanowires grow along the [001] direction. The formation mechanism is mainly related to the special crystal structure of Sb2Se3. The TE properties of SPS nanocomposites of Bi2Te3 with different amount of Sb2Se3 nanowires were investigated. The addition of 1 at% Sb2Se3 nanowires can improve the electric properties of the Bi2Te3 nanopowders.

参考文献

[1]Nascimento V B, de Carvalho V E, Paniago R, et al. XPS and EELS study of the bismuth selenide. J. Electron. Spectrosc., 1999, 104(1): 99-107.

[2]Rajpure K Y, Lokhande C D, Bhosale C H. A comparative study of the properties of spray-deposited Sb2Se3 thin films prepared from aqueous and nonaqueous media. Mater. Res. Bull., 1999, 34(7): 1079-1087.

[3]Fernandez A M, Merino M G. Preparation and characterization of Sb2Se3 thin films prepared by electrodeposition for photovoltaic applications. Thin Solid Films, 2000, 366(1): 202-206.

[4]Arun P, Vedeshwar A G, Mehra N C. Laser-induced crystallization in amorphous films of Sb2C3(C = S, Se, Te), potential optical storage media. J. Phys. D: Appl. Phys., 1999, 32(3): 183-190.

[5]Kaito C, Saito Y, Fujita K. Studies on the structure and morphology of ultrafine particles of metallic sulfides. J. Crystal Growth, 1989, 94(4): 967-977.

[6]Arivuoli D, Gnanam F D, Ramasamy P. Growth and microhardness studies of chalcogenides of arsenic,antimony and bismuth. J. Mater. Sci. Lett., 1988, 7(7): 711-713.

[7]Wang D B, Yu D B, Mo M S, et al. Preparation and characterization of wire-like Sb2Se3 and flake-like Bi2Se3 nanocrystals. J. Crystal Growth, 2003, 253 (1-4): 445-451.

[8]Shen G Z, Chen D, Tang K B, et al. A rapid ethylenediamine- assisted polyol route to synthesize Sb2E3 (E=S, Se) nanowires. J. Crystal Growth, 2003, 252(1/2/3): 350-354.

[9]Wang D B, Yu D B, Shao M W, et al. Growth of Sb2Se3 whiskers via a hydrothermal method. Materials Chemistry and Physics, 2003, 82(3): 546-550.

[10]Ma X C, Zhang Z D, Wang X, et al. Large-scale growth of wire-like Sb2Se3 microcrystallines via PEG-400 polymer chain- assisted route. J. Crystal Growth, 2004, 263 (1-4): 491-497.

[11]Zheng X W, Xie Y, Zhu L Y, et al. Growth of Sb2E3 (E = S, Se) polygonal tubular crystals via a novel solvent-relief-self-seeding process. Inorg. Chem., 2002, 41(3): 455-461.

[12]Wang J W, Deng Z X, Li Y D. Synthesis and characterization of Sb2Se3 nanorods. Materials Research Bulletin, 2002, 37(3): 495-502.

[13]Han Q F, Chen J, Lu J, et al. Preparation and characterization of belt-like Sb2Se3 crystals. Materials Letters, 2008, 62(14): 2050-2052.

[14]高 敏, 张景韶, ROWE D M. 温差电转换及其应用. 北京: 兵器工业出版社, 1996: 168-175.

[15]Venkatasubramanian R, Siivola E, Colpitts T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597-602.

[16]Deng Y, Zhou X S , Wei G D, et al. Solvothermal preparation and characterization of nanocrystalline Bi2Te3 powder with different morphology. J. Phys. Chem. Solids, 2002, 63(11): 2119-2121

[17]Deng Y, Nan C W, Wei G D, et al. Organic-assisted growth of bismuth telluride nanocrystals. Chem. Phys. Lett., 2003, 374(3/4): 410-415

[18]Zhao X B, Ji X H, Zhang Y H, et al. Hydrothermal synthesis and microstructure investigation of nanostructured bismuth telluride powder. Appl. Phys. A, 2005, 80(7): 1567-1571

[19]Zhao X B, Ji X H, Zhang Y H, et al. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett., 2005, 86(6): 062111-1-3.
文章导航

/