采用超声化学法结合还原热处理合成了单相的AgSbTe2粉体, 并结合放电等离子烧结(SPS)制备了相应的块体. 系统研究了不同前驱体制备条件、热处理温度、时间和起始化学计量比对相组成的影响, 并对烧结块体的热电性能进行了初步研究. 结果表明: 超声化学法合成的前驱体在500℃、2h还原热处理后可以得到近单相的AgSbTe2,且通过调节起始原料的摩尔比可以得到单相的AgSbTe2. 所得粉体颗粒平均粒径约为10?m, 表面均匀分布着20~50nm的纳米颗粒. 性能测试表明单相样品的无量纲热电优值ZT值在570K最大可达1.14.
Single-phase AgSbTe2 powder was synthesized by sonochemicial method combining with deoxidizing heat-treatment. The influences of heat-treatment temperature, time and the initial ratio of starting reactants on the phases of the final products were investigated. Near single-phase AgSbTe2 ternary powder can be obtained after 2h heat treatment under 500℃, and single-phase AgSbTe2 can be obtained by changing the initio ratio of the starting reactants. Microstructure analysis shows that nanodots with dimension of 20-50nm are uniformly distributed on the surface of the as-prepared powders with the average size of about 10?m. A dimensionless thermoelectric figure of merit ZT = 1.14 is obtained at 570K for the sample with single phase.
[1]Morelli D T, Jovovic V, Heremans J P. Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. Phys. Rev. Lett., 2008, 101(3): 035901-1-4.
[2]Jovovic V, Heremans J P. Measurements of the energy band gap and valence band structure of AgSbTe2. Phys. Rev. B, 2008, 77(24): 245204-1-8.
[3]Matsushita H, Hagiwara E, Katsui A. Phase diagram and thermoelectric properties of Ag3-xSb1+xTe4 system. J. Mater. Sci., 2004, 39(20): 6299-6301.
[4]Wojciechowski K, Tobola J, Schmidt M, et al.Crystal structure, electronic and transport properties of AgSbSe2 and AgSbTe2. J. Phys. Chem. Solids, 2008, 69(11): 2748-2755.
[5]Wojciechowski K, Schmidt M. Structural and thermoelectric properties of AgSbTe2-AgSbSe2 pseudobinary system. Phys. Rev. B, 2009, 79(18): 184202-1-7.
[6]Wang H, Li J F, Zou M M, et al. Synthesis and transport property of AgSbTe2 as a promising thermoelectric compound. Appl. Phys. Lett., 2008, 93(20): 202106-1-3.
[7]Su T C, Jia X P, Ma H, et al. Enhanced thermoelectric performance of AgSbTe2 synthesized by high pressure and high temperature. J. Appl. Phys., 2009, 105(7): 073713-1-4.
[8]Karkamkar A J, Kanatzidis M G. Chemicial routes to nanocrystalline thermoelectrically relevant AgPbmSbTem+2 materials. J. Am. Chem. Soc., 2006, 128(18): 6002-6003.
[9]Wang X, Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis. Nature, 2005, 437: 121-124.
[10]Li B, Xie Y, Liu Y, et al. Sonochemicial synthesis of nanocrystalline silver tellurides Ag2Te and Ag7Te4. J. Solid State Chem., 2001, 158(2): 260-263.
[11]Sun T, Zhao X B, Zhu T J, et al. Aqueous chemical reduction sythesis of Bi2Te3 nanowires with surfactance. Mater. Lett., 2006, 60(20): 2534-2537.
[12]Sugar J D, Medlin D L. Precipitation of Ag2Te in the thermoelectric material AgSbTe2. J. Alloy. Compd., 2009, 478(112): 75-82.
[13]Li H, Cai K F, Wang H F, et al. The influcence of co-doping Ag and Sb on microstructure and thermoelectric properties of PbTe prepared by combining hydrothermal synthesis and melting. J. Solid State Chem., 2009, 182(4): 869-874.
[14]Ahn K, Li C P, Uher C, et al. Improvement in the thermoelectric figure of merit by La/Ag cosubstitution in PbTe. Chem. Mater., 2009, 21(7): 1361-1367.
[15]Zhao L D, Zhang B P, Li J F, et al. Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sci., 2008, 10(5): 651-658.
[16]Li H, Tang X F, Zhang Q J, et al. High performance InxCeyCo2Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. Appl. Phys. Lett., 2009, 94(10): 102114-1-3.