[1] Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems.
Science, 2008, 321(5895): 1457-1462.
[2] Sales B C, Mandrus D, Williams R K. Filled skutterudite antimonides: a new class of thermoelectric materials.
Science, 1996, 272(5266): 1325-1328.
[3]Keppens V, Mandrus D, Sales B C,
et al. Localized vibrationalmodes inmetallic solids.
Nature, 1998, 395(6705): 876-878.
[4]Chen L D, Kawahara T, Tang X F,
et al. Anomalous barium filling fraction and n-type thermoelectric performance of Ba
yCo
4Sb
12.
J. Appl. Phys,2001, 90(4):1864-1868
[5]Puyet M, Dauscher A, Lenoir B,
et al. Beneficial effect of Ni substitution on the thermoelectric properties in partially filled Ca
yCo
4-xNi
xSb
12 skutterudites.
J. Appl. Phys,2005, 97(9):083712-1
[6]Lu Q M, Zhang J X, Zhang X,
et al. Effects of double filling of La and Ce on thermoelectric properties of Ce
mLa
nFe
1.0Co
3.0Sb
12 compounds by spark plasma sintering.
J. Appl. Phys., 2005, 98(10): 106107-1-3.
[7]Tang X F, Li H, Zhang Q J,
et al. Synthesis and thermoelectric properties of double-atom-filled skutterudite compounds Ca
mCe
nFe
xCo
4-xSb
12.
J. Appl. Phys, 2006, 100(12):123702-1
[8]Yang J, Zhang W, Bai S Q,
et al. Dual-frequency resonant phonon scattering in Ba
xR
yCo
4Sb
12 (R=La, Ce, and Sr).
Appl. Phys. Lett., 2007, 90(19): 192111-1-3.
[9]Shi X, Kong H, Li C P,
et al. Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites.
Appl. Phys. Lett, 2008, 92(18):182101-1
[10]Peng J Y, Alboni P N, He J,
et al. Thermoelectric properties of (In,Yb) double-filled CoSb3 skutterudite.
J. Appl. Phys,2008, 104(5):053710-1
[11]Peng J Y, He J, Alboni P N,
et al. Synthesis and thermoelectric properties of the double-filled skutterudite Yb
0.2In
yCo
4Sb
12.
J. Electron. Mater., 2009, 38(7): 981-984.
[12]Zhao W Y, Dong C L, Wei P,
et al. Synthesis and high temperature transport properties of barium and indium double-filled skutterudites Ba
xIn
yCo
4Sb
12-z.J
. Appl. Phys ,2007, 102(11):113708-1
[13]Zhao W Y, Wei P, Zhang Q J,
et al. Enhanced thermoelectric performance in barium and indium double-filled skutterudite bulk materials via orbital hybridization induced by indium filler.
J. Am. Chem. Soc, 2009, 131(10):3713-3720
[14]Pedersen B L, Iversen B B. Thermally stable thermoelectric Zn
4Sb
3 by zone-melting synthesis.
Appl. Phys. Lett., 2008, 92(16): 161907-1-3.
[15]Cederkrantz D, Saramat A, Snyder G J,
et al. Thermal stability and thermoelectric properties of p-type Ba
8Ga
16Ge
30 clathrates.
J. Appl. Phys,2009, 106(7):074509-1
[16]Joshi G, Lee H, Lan Y,
et al. Enhanced thermoelectric figure- of-merit in nanostructured p-type silicon germanium bulk alloys.
Nano Lett,2008, 8(12):4670-4674
[17]Xie W J, Tang X F, Yan Y G,
et al. High thermoelectric performance BiSbTe alloy with unique low-dimensional Structure.
J. Appl. Phys., 2009, 105(11): 113713-1-8.
[18]Zhou M, Li J F, Kita T. Nanostructured AgPb
mSbTe
m+2 system bulk materials with enhanced thermoelectric performance.
J. Am. Chem. Soc,2008, 130(13):4527-4532
[19]Tanaka K, Kohri H, Shiota I,
et al. Thermal Stability of Thermoelectric Properties for Nondoped PbTe. Proceedings of the 20th International Conference Thermoelectrics. Beijing, China, 2001: 154-156.