研究论文

稀土掺杂对锡基Half-Heusler合金热电特性的影响

  • 李晓光 ,
  • 霍德璇 ,
  • 何才君 ,
  • 赵士超 ,
  • 吕燕飞
展开
  • (杭州电子科技大学 材料物理研究所, 杭州 310018)

收稿日期: 2009-10-14

  修回日期: 2009-12-08

  网络出版日期: 2010-05-12

基金资助

浙江省科技计划项目(2007C24015)

Effect of Rare-earth Doping on the Thermoelectric Properties of the Tin-based Half-Heusler Alloys

  • LI Xiao-Guang ,
  • HUO De-Xuan ,
  • HE Cai-Jun ,
  • ZHAO Shi-Chao ,
  • Lü Yan-Fei
Expand
  • (Institute of Materials Physics, Hangzhou Dianzi University, Hangzhou 310018, China)

Received date: 2009-10-14

  Revised date: 2009-12-08

  Online published: 2010-05-12

摘要

采用电弧熔炼法和放电等离子体烧结法, 制备了稀土掺杂的金属间化合物Zr1-xLaxNiSn (x = 0.05, 0.1, 0.15, 0.2, 0.3, 0.4) 和Zr0.98R0.02NiSn0.98X0.02(R = La, Ce; X = Sb, Bi). 用X射线衍射仪分析研究了它们的晶体结构随稀土替代量演化的规律. 在室温到700 K的范围内, 对其热电特性进行了评价. 研究结果表明, 代换量x小于0.15时, 稀土原子可以进入晶格形成单相化合物. 代换量x大于0.15的样品中含有非half-Heusler的第二相, 且含量随x增大而增加. 少量稀土掺杂可以有效地降低材料的热导率而保持良好的电输运特性. 在575 K, Zr0.98La0.02NiSn0.98Sb0.02的热电优值达到0.5.

本文引用格式

李晓光 , 霍德璇 , 何才君 , 赵士超 , 吕燕飞 . 稀土掺杂对锡基Half-Heusler合金热电特性的影响[J]. 无机材料学报, 2010 , 25(6) : 573 -576 . DOI: 10.3724/SP.J.1077.2010.00573

Abstract

Intermetallic compounds Zr1-xLaxNiSn (x = 0.05, 0.1, 0.15, 0.2, 0.3, 0.4) and Zr0.98R0.02NiSn0.98X0.02(R = La, Ce; X=Sb, Bi) were synthesized using arc melting and spark plasma sintering (SPS) techniques. The changes of their crystal structures were analyzed by using X-ray diffractometer. Thermoelectric properties were evaluated in the temperature range of 300 to 925 K. For x≤0.15, single-phase samples can be obtained. With x > 0.15, a non-half-heusler phase formed. The content of the second phase increases with x. For the samples with x≤0.15, rare-earth doping can effectively reduce the thermal conductivity while keeping good electrical transport. The maximum value of ZT was obtained in Zr0.98La0.02NiSn0.98Sb0.02, which reaches 0.5 at 575K.

参考文献

[1]Muta H, Yamaguchi T, Kurosaki K, et al. Thermoelectric Proper-ties of ZrNiSn Based Half-Heusler Compounds. ICT Proceedings, IEEE 2005: 339-342.

[2]黄向阳, 徐 政, 陈立东(HUANG Xiang-Yang, et al). Half-Heusler热电半导体材料. 无机材料学报(Journal of Inor-ganic Materials), 2004, 19(1): 25-30.

[3] Muta H, Kanemitsu T, Kurosaki K, et al. High-temperature thermoelectric properties of Nb-doped MNiSn (M = Ti, Zr) half-Heusler compound. Journal of Alloys and Compounds, 2009, 469(1/2): 50-55.

[4] Culp S R, Poon S J, Hickman N, et al. Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800°C. Applied Physics Letters, 2006, 88(4): 042106-1-3. [5] Kim S, Kimura Y, Mishima Y. High temperature thermoelectric properties of  TiNiSn-based half-Heusler compounds. Intermetallics, 2007, 15(3): 349-356.

[6]Culp S, Poon S J, Sorloaica N, et al. Complex MNiSn Phases as Stable High-temperature Thermoelectric Materials. ICT Proceed-ings, IEEE, 2005: 387-390.

[7] Culp S, Poon S J, Sorloaica N, et al. Complex MNiSn Phases as Stable High-temperature Thermoelectric Materials. ICT Proceedings, IEEE, 2005: 387-390.

[8] Shen Q, Zhang L M, Chen L D, et al. Thermoelectric properties of ZrNiSn-based half-Heusler compounds by solid state reaction method. Journal of Materials Science Letters, 2002, 20(24): 2197-2199.

[9] Sakurada S, Shutoh N. Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds. Applied Physics Letters, 2005, 86(8): 082105-1-3.

[10] Morimura T, Hasaka M, Kondo S. Transmission electron microscopy observation of the half-Heusler compound Ti0.5(Zr0.5Hf0.5)0.5NiSn0.998Sb0.002. Scripta Materialia, 2008, 59(8): 886-888.

[11] Katsuyama S, Matsuo R, Ito M. Thermoelectric properties of half-Heusler alloys Zr1-xYxNiSn1-ySby. Journal of Alloys and Compounds, 2007, 428(1/2): 262-267.

[12] Culp S R, Simonson J W, Poon S J, et al.  (Zr,Hf)Co(Sb,Sn) half-Heusler phases as high-temperature (>700 °C) p-type thermoelectric materials. Applied Physics Letters, 2008, 93(2): 022105-1-3.

[13] Xia Y, Bhattacharya S, Ponnambalam V, et al. Thermoelectric properties of semimetallic (Zr, Hf)CoSb half-Heusler phases. Journal of Applied Physics, 2000, 88(4): 1952-1955.

[14] Mastronardi K, Young D, Wang C C, et al. Antimonides with the half-Heusler structure: new thermoelectric materials. Applied Physics Letters, 1999, 74(10): 1415-1417.
文章导航

/