TiO2纳米管负载纳米金的制备及其在紫外光下的光电性能
收稿日期: 2009-11-10
修回日期: 2009-12-21
网络出版日期: 2010-05-12
Development of Titania Nanotubes Loaded with Au Nanoparticles and their Opto-electronic Response under UV Light
Received date: 2009-11-10
Revised date: 2009-12-21
Online published: 2010-05-12
罗 军, 廖 斌, 陈一鸣, 刘安东, 刘培生 . TiO2纳米管负载纳米金的制备及其在紫外光下的光电性能[J]. 无机材料学报, 2010 , 25(5) : 557 -560 . DOI: 10.3724/SP.J.1077.2010.09777
Au nanoparticles surfacemodified titania nanotubes were produced by direct current (DC) magnetic sputtering technology. The morphology of the nanotubes was characterized by X-ray diffractometry (XRD) and field emission scanning electron microscope (FESEM). Opto-electronic properties were tested under UV light. Comparing with original titania nanotubes, Au/TiO2 nanotubes can generate the photocurrent with great improvements in constant potential and dynamic potential. At constant potential (1.0V) test under UV light, the photovoltaic current generated by Au/TiO2 is 0.4mA, 1.8-fold of original nanotubes’. While at dynamic photocurrent (-1.5V to 1.5V) test, the photocurrent has reached 0.75mA, which is 3.75-fold of that for original nanobubes under the scan voltage of 1.5V.
Key words: titania nanotubes; DC magnetic sputtering; photocurrent
[1]Hueso L, Mathura N. Nanotechnology, dreams of a hollow future. Nature, 2004, 427(6972): 301-304.
[2]Fujishima A, Honda K. Photocell using covalently-bound dyes on semiconductor surfaces. Nature, 1977, 268(5617): 226-268.
[3]Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev., 1995, 95(3): 735.
[4]Bolton J R. Solar photo production of hydrogen: a review. Solar Energy, 1996, 57: 37-50.
[5]Aroutiounian V M, Arakelyan V M, Shahnazaryan G E. Metal oxide photoelectrodes for hydrogen generation using solar radiationdriven water splitting. Solar Energy, 2005, 78(5): 581-592.
[6]Gratzel M. Review: dyesensitized solar cells. J. Photochem. Photobiol. C: Photochem. Rev., 2003, 4(2): 145-153.
[7]Ashokkumar M. An overview on semiconductor particulate systems for photoproduction of hydrogen. Int. J. Hydrogen Energy, 1998, 23(6): 427-438.
[8]Gratzel M. Photoelectrochemical cell. Nature, 2001, 414: 338-344.
[9]Gratzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol. A: Chem., 2004, 163(1/2/3): 3-14.
[10]Davis M E. Ordered porous materials for emerging applications. Nature, 2002, 417(6891): 813-821.
[11]Inagaki S, Guan S, Ohsuna T, et al. An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature, 2002, 416(6878): 304-307.
[12]Zhu K, Neale N R, Miedaner A. Enhanced charge-collection efficiencies and light scattering in dyesensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett., 2007, 7(1): 69-74.
[13]Khan M A, Jung H T, Yang O B. Synthesis and characterization of ultrahigh crystalline TiO2 nanotubes. J. Phys. Chem. B, 2006, 110(13): 6626-6630.
[14]Nishijima K, Fukahori T, Murakami N, et al. Development of a titania nanotube (TNT) loaded site-selectively with Pt nanoparticles and their photocatalytic activities. Applied Catalysis A: General, 2008, 337(1): 105-109.
[15]Kang Q, Yang L X, Cai Q Y. An electro-catalytic biosensor fabricated with Pt-Au nanoparticle-decorated titania nanotube array. Bioelectro. Chemistry, 2008, 74(1): 62-65.
[16]Hou X G, Liu A D. Modification of photocatalytic TiO2 thin films by electron beam irradiation. Radiation Physics and Chemistry, 2008, 77(3): 345-351.
/
〈 | 〉 |