研究论文

纳米非计量磷灰石/聚合物复合支架的制备和性能研究

  • 王志伟 ,
  • 苏佳灿 ,
  • 马玉海 ,
  • 张 欣 ,
  • 曹烈虎 ,
  • 李 明
展开
  • 上海市第二军医大学附属长海医院 骨科, 上海 200433

收稿日期: 2009-08-26

  修回日期: 2009-12-04

  网络出版日期: 2010-05-12

Preparation and Properties of Nano Calcium Deficient Apatite/Poly (ε-caprolactone) Composite Scaffold

  • WANG Zhi-Wei ,
  • SU Jia-Can ,
  • MA Yu-Hai ,
  • ZHANG Xin ,
  • CAO Lie-Hu ,
  • LI Meng
Expand
  • Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China

Received date: 2009-08-26

  Revised date: 2009-12-04

  Online published: 2010-05-12

摘要

采用快速成形法制备了孔径和孔隙率可控、大孔互相贯通的纳米缺钙羟基磷灰石(cd-HA)与聚己内酯(PCL)复合材料多孔支架, 并对复合支架的微结构进行了表征. 通过细胞培养和体内动物实验研究了该支架的生物学性能. 结果表明:复合材料的亲水性和细胞粘附率随磷灰石含量增加而提高; 成骨细胞在复合支架上的增殖明显高于纯PCL; μ-CT和组织学分析结果显示, 新骨在支架的表面形成并长入其中. 相互贯通的多孔支架促进了细胞的增殖和新骨长入支架内部. cd-HA/PCL复合材料支架具有很好的生物相容性, 在组织工程领域中有潜在的应用前景.

本文引用格式

王志伟 , 苏佳灿 , 马玉海 , 张 欣 , 曹烈虎 , 李 明 . 纳米非计量磷灰石/聚合物复合支架的制备和性能研究[J]. 无机材料学报, 2010 , 25(5) : 500 -506 . DOI: 10.3724/SP.J.1077.2010.00500

Abstract

Nano calcium deficient hydroxyapatite (cd-HA) and poly(ε-caprolactone) (PCL) composite scaffold with well interconnected and open macropores was prepared by rapidprototyping technique, and its pore size and porosity was controlled. In addition, the characterization of the microstructure of the cdHA/PCL composite scaffold was carried out. The biological properties of the composite scaffold were investigated through cell culture and animal model experiments. The results showed that the hydrophilicity and cell attachment ratio of the composite increased with the increase of cd-HA content in the cd-HA/PCL composite, and the proliferation ratio of the MG63 cells on the composite scaffold was much higher than that on the PCL scaffold. Radiological and histological examinations confirmed that the newly bony tissue formed on the surfaces of the composite scaffold and grew into the pores of the composite scaffolds. The well interconnected macropores in the composite scaffolds might encourage cell proliferation and thus enhance new bone formation in the porous scaffolds. In summary, the results indicates that the cd-HA/PCL composite scaffold with excellent biocompatibility has potential application in tissue engineering.

参考文献

[1]Kamitakahara Masanobu, Ohtsuki Chikara, Miyazaki Toshiki. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition.J. Biomater. Appl,2008, 23(3):197-212
[2]Kim Hyunbin, Camata Renato P, Lee Sukbin, et al. Crystallographic texture in pulsed laser deposited hydroxyapatite bioceramic coatings.Acta Materialia,2007, 55(1):131-139
[3]Dumelie N, Benhayoune H, Richard D, et al. In vitro precipitation of electrodeposited calcium-deficient hydroxyapatite coatings on Ti6Al4V substrate.Materials Characterization,2008, 59(2):129-133
[4]LI Yu-Bao, de Wijin J, Klein C P A T, et al. Groot de K. Preparation and characteri zation of nanograde osteoapatite-like rodcrystals. J. Mater. Sci.: Mater. Med.,1994, 5(3): 252-255.
[5]WEI Jie, LI Yu-Bao, He Yi. Processing properties of nano apatite-polyamide biocomposites. J. Mater. Sci. Lett.,2005, 40(3): 793-797.
[6]LIAO SuSan, Watari Fumio, ZHU Yu-He, et al. The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro.Dental Materials,2007, 23(9):1120-1128
[7]Murugan Ramalingam, Ramakrishna Seeranm. Nano-featured scaffolds for t3 engineering: a review of spinning methodologies.T3 Engineering,2006, 12(3):435-447
[8]Lopez-Heredia Marco A, Sohier Jerome, Gsillard Cedric, et al. Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone t17 engineering.Biomaterials,2008, 29(17):2608-2615
[9]YANG Shou-Feng,YANG Hong-Yi,CHI Xiao-Peng, et al. Rapid prototyping of ceramic lattices for hard t9 scaffolds.Materials and Design,2008, 29(9):1802-1809
[10]Darling Andrewt, Shor Lauren, Khalil Saif, et al. Multi-material scaffolds for t1 engineering.Macromolecular Symposia,2005, 227(1):345-355
[11]Hollister Scott J. Porous scaffold design for t7 engineering.Nature Materials,2005, 4(7):518-524
[12]Mohamad Yunos D, Bretcanu Oana, Boccaccini Aldo R. Polymer-bioceramic composites for t13 engineering scaffolds.J. Mater. Sci,2008, 43(13):4433-4442
[13]Jones Julian R, Ehrenfried Lisa M, Hench Larry L. Optimising bioactive glass scaffolds for bone t7 engineering.Biomaterials,2006, 27(7):964-973
[14]LIU Xuan-Yong, Fu Ricky K Y, Poon Ray W Y, et al. Biomimetic growth of apatite on hydrogen-implanted silicon.Biomaterials,2004, 25(25):5575-5581
[15]WEI Jie, LI Yu-Bao. T3 engineering scaffold material of nano-apatite crystals and polyamide composite.Eur. Poly. J,2004, 40(3):509-515
[16]LIU Hai-Feng, FAN Hong-Bin, WANG Yue, et al. Ligament t6 engineering.Biomaterials,2008, 29(6):662-674

文章导航

/