多孔C/Fe纳米复合材料的制备及表征
Synthesis and Characterization of Porous Carbon/Fe Nanocomposite
Received date: 2009-10-29
Revised date: 2009-12-14
Online published: 2010-05-12
以商业活性炭为原料, 采用真空浸渍法结合高温真空热处理工艺, 制备出多孔C/Fe纳米复合材料. 实验采用氮气吸附法测量了C/Fe纳米复合材料的比表面积和孔径分布, 并利用XRD和TEM表征了其结构和形貌. 实验结果显示:C/Fe纳米复合材料的比表面积为450~650m2/g, 并保留了活性炭介孔尺度的多孔结构特性. C/Fe纳米复合材料由非晶碳、碳纳米带以及铁纳米粒子构成, 纳米铁颗粒均匀分布在非晶碳基体中, 石墨化的碳纳米带包裹纳米铁颗粒并向外伸展相互连接, 形成碳纳米网络结构. 并就反应过程以及过渡金属对非晶碳石墨化的催化机理进行了探讨.
曹 斌 , 刘庆雷 , 张 荻 . 多孔C/Fe纳米复合材料的制备及表征[J]. 无机材料学报, 2010 , 25(5) : 457 -462 . DOI: 10.3724/SP.J.1077.2010.00457
Porous carbon/Fe nanocomposite was produced by vacuum impregnation method and following heattreatment process using activated carbon as the raw material. The surface area (BET) and the pore size distribution of the nanocomposite were measured through nitrogen adsorption method at 77K. X-ray diffraction (XRD) and transmission electron microscope (TEM) were used to characterize the microstructure and morphology. Surface area of the C/Fe nanocomposite is 450-650m2/g, and the composite also has a similar pore size distribution to activated carbon in mesoporous range. The C/Fe nanocomposite is composed of amorphous carbon, graphene nanoribbons and Fe nanoparticles. Fe nanoparticles that are encapsulated by graphitic layers distribute uniformly inside the amorphous carbon matrix. The graphene nanoribbons extend throughout the amorphous carbon matrix and interconnect each other to form a graphene nanoribbon network. Reaction process is investigated by a thermo gravimetric analysis (TGA) method, and the growth mechanism of carbon nanoribbons is also discussed.
[1]Texier-Mandokia N, Dentzer J, Piqueroa T, et al. Hydrogen storage in activated carbon materials: role of the nanoporous texture.Carbon,2004, 42(12/13):2744-2747
[2]Dillon A C, Heben M J. Hydrogen storage using carbon adsorbents: past, present and future.Appl. Phys. A,2001, 72(2):133-142
[3]Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors.Carbon,2001, 39(6):937-950
[4]Qu D Y. Studies of the activated carbons used in double-layer supercapacitors.Journal of Power Sources,2002, 109(2):403-411
[5]Shi H. Activated carbons and double layer capacitance.Electrochim. Acta,1996, 41(10):1633-1639
[6]周鹏伟, 李宝华, 康飞宇, 等. 椰壳活性炭基超级电容器的研制与开发.新型炭材料,2006, 21(2):125-131
[7]Chen C, Kennel E B, Stiller A H, et al. Carbon foam derived from various precursors.Carbon,2005, 44(8):1535-1543
[8]Fuertes A B, Alvarez S. Graphitic mesoporous carbons synthesised through mesostructured silica templates.Carbon,2004, 42(15):3049-3055
[9]BarataRodrigues P M, Mays T J, Moggridge G D. Structured carbon adsorbents from clay, zeolite and mesoporous aluminosilicate templates.Carbon,2003, 41(12):2231-2246
[10]Kyotani T, Ma Z X, Tomita A. Template synthesis of novel porous carbons using various types of zeolites.Carbon,2003, 41(7):1451-1459
[11]Su F B, Zeng J H, Yu Y S, et al. Template synthesis of microporous carbon for direct methanol fuel cell application.Carbon,2005, 43(11):2366-2373
[12]Inagaki M, Suwa T. Pore structure analysis of exfoliated graphite using image processing of scanning electron micrographs.Carbon,2001, 39(6):915-920
[13]Franklin R E. Crystallite growth in graphitizing and non-graphitizing carbons. Proc. Roy. Soc., 1951, A209(1097): 196-218.
[14]Harris P J F. New perspectives on the structure of graphitic carbons.Critical Reviews in Solid State and Materials Sciences,2005, 30:235-253
[15]Harris P J F, Liu Z, Suenaga K. Imaging the atomic structure of activated carbon.J. Phys. Condens. Matter,2008, 20(36):362201-1
[16]Qu D, Shi H. Studies of activated carbons used in doublelayer capacitors.Journal of power sources,1998, 74(1):99-107
[17]Salitra G, Soffer A, Eliad L, et al. Carbon electrodes for double-layer capacitors I. relations between ion and pore dimensions. J. Electrochem. Soc., 2000, 147(7): 2486-2493.
[18]孟庆函, 刘 玲, 宋 怀. 特定孔径分布活性炭的制备及电容性能研究. 功能材料, 2005, 2(36): 228-230.
[19]庄新国, 杨裕生, 嵇友菊, 等(ZHUANG Xin-Guo, et al). 超级电容器炭电极材料孔结构对其性能的影响. 物理化学学报(Acta Phys.Chim. Sin.), 2003, 19(8): 689-694.
[20]Sevilla M, Fuertes A B. Catalytic graphitization of templated mesoporous carbons.Carbon,2006, 44(3):468-474
[21]Ding F, Bolton K, Rose’n A. Nucleation and growth of singlewalled carbon nanotubes: a molecular dynamics study.J. Phys. Chem. B,2004, 108(45):17369-17377
[22]Harris P J F. Solid state growth mechanisms for carbon nanotubes.Carbon,2007, 45(2):229-239
[23]Gorbunov A, Jost O, Pompe W, et al. Solid-liquid-solid growth mechanism of single-wall carbon nanotubes.Carbon,2002, 40(1):113-118
[24]Moisala A, Nasibulin A G, Kauppinen E I. The role of metal nanoparticles in the catalytic production of singlewalled carbon nanotubes:a review.J. Phys.: Condens. Matter,2003, 15(42):0-S3035
/
〈 | 〉 |