研究论文

多孔C/Fe纳米复合材料的制备及表征

  • 曹 斌 ,
  • 刘庆雷 ,
  • 张 荻
展开
  • 上海交通大学 金属基复合材料国家重点实验室, 上海 200240

收稿日期: 2009-10-29

  修回日期: 2009-12-14

  网络出版日期: 2010-05-12

Synthesis and Characterization of Porous Carbon/Fe Nanocomposite

  • CAO Bin ,
  • LIU Qiang-Lei ,
  • ZHANG Di
Expand
  • State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2009-10-29

  Revised date: 2009-12-14

  Online published: 2010-05-12

摘要

以商业活性炭为原料, 采用真空浸渍法结合高温真空热处理工艺, 制备出多孔C/Fe纳米复合材料. 实验采用氮气吸附法测量了C/Fe纳米复合材料的比表面积和孔径分布, 并利用XRD和TEM表征了其结构和形貌. 实验结果显示:C/Fe纳米复合材料的比表面积为450~650m2/g, 并保留了活性炭介孔尺度的多孔结构特性. C/Fe纳米复合材料由非晶碳、碳纳米带以及铁纳米粒子构成, 纳米铁颗粒均匀分布在非晶碳基体中, 石墨化的碳纳米带包裹纳米铁颗粒并向外伸展相互连接, 形成碳纳米网络结构. 并就反应过程以及过渡金属对非晶碳石墨化的催化机理进行了探讨.

本文引用格式

曹 斌 , 刘庆雷 , 张 荻 . 多孔C/Fe纳米复合材料的制备及表征[J]. 无机材料学报, 2010 , 25(5) : 457 -462 . DOI: 10.3724/SP.J.1077.2010.00457

Abstract

Porous carbon/Fe nanocomposite was produced by vacuum impregnation method and following heattreatment process using activated carbon as the raw material. The surface area (BET) and the pore size distribution of the nanocomposite were measured through nitrogen adsorption method at 77K. X-ray diffraction (XRD) and transmission electron microscope (TEM) were used to characterize the microstructure and morphology. Surface area of the C/Fe nanocomposite is 450-650m2/g, and the composite also has a similar pore size distribution to activated carbon in mesoporous range. The C/Fe nanocomposite is composed of amorphous carbon, graphene nanoribbons and Fe nanoparticles. Fe nanoparticles that are encapsulated by graphitic layers distribute uniformly inside the amorphous carbon matrix. The graphene nanoribbons extend throughout the amorphous carbon matrix and interconnect each other to form a graphene nanoribbon network. Reaction process is investigated by a thermo gravimetric analysis (TGA) method, and the growth mechanism of carbon nanoribbons is also discussed.

参考文献

[1]Texier-Mandokia N, Dentzer J, Piqueroa T, et al. Hydrogen storage in activated carbon materials: role of the nanoporous texture.Carbon,2004, 42(12/13):2744-2747
[2]Dillon A C, Heben M J. Hydrogen storage using carbon adsorbents: past, present and future.Appl. Phys. A,2001, 72(2):133-142
[3]Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors.Carbon,2001, 39(6):937-950
[4]Qu D Y. Studies of the activated carbons used in double-layer supercapacitors.Journal of Power Sources,2002, 109(2):403-411
[5]Shi H. Activated carbons and double layer capacitance.Electrochim. Acta,1996, 41(10):1633-1639
[6]周鹏伟, 李宝华, 康飞宇, 等. 椰壳活性炭基超级电容器的研制与开发.新型炭材料,2006, 21(2):125-131
[7]Chen C, Kennel E B, Stiller A H, et al. Carbon foam derived from various precursors.Carbon,2005, 44(8):1535-1543
[8]Fuertes A B, Alvarez S. Graphitic mesoporous carbons synthesised through mesostructured silica templates.Carbon,2004, 42(15):3049-3055
[9]BarataRodrigues P M, Mays T J, Moggridge G D. Structured carbon adsorbents from clay, zeolite and mesoporous aluminosilicate templates.Carbon,2003, 41(12):2231-2246
[10]Kyotani T, Ma Z X, Tomita A. Template synthesis of novel porous carbons using various types of zeolites.Carbon,2003, 41(7):1451-1459
[11]Su F B, Zeng J H, Yu Y S, et al. Template synthesis of microporous carbon for direct methanol fuel cell application.Carbon,2005, 43(11):2366-2373
[12]Inagaki M, Suwa T. Pore structure analysis of exfoliated graphite using image processing of scanning electron micrographs.Carbon,2001, 39(6):915-920
[13]Franklin R E. Crystallite growth in graphitizing and non-graphitizing carbons. Proc. Roy. Soc., 1951, A209(1097): 196-218.
[14]Harris P J F. New perspectives on the structure of graphitic carbons.Critical Reviews in Solid State and Materials Sciences,2005, 30:235-253
[15]Harris P J F, Liu Z, Suenaga K. Imaging the atomic structure of activated carbon.J. Phys. Condens. Matter,2008, 20(36):362201-1
[16]Qu D, Shi H. Studies of activated carbons used in doublelayer capacitors.Journal of power sources,1998, 74(1):99-107
[17]Salitra G, Soffer A, Eliad L, et al. Carbon electrodes for double-layer capacitors I. relations between ion and pore dimensions. J. Electrochem. Soc., 2000, 147(7): 2486-2493.
[18]孟庆函, 刘 玲, 宋 怀. 特定孔径分布活性炭的制备及电容性能研究. 功能材料, 2005, 2(36): 228-230.
[19]庄新国, 杨裕生, 嵇友菊, 等(ZHUANG Xin-Guo, et al). 超级电容器炭电极材料孔结构对其性能的影响. 物理化学学报(Acta Phys.Chim. Sin.), 2003, 19(8): 689-694.
[20]Sevilla M, Fuertes A B. Catalytic graphitization of templated mesoporous carbons.Carbon,2006, 44(3):468-474
[21]Ding F, Bolton K, Rose’n A. Nucleation and growth of singlewalled carbon nanotubes: a molecular dynamics study.J. Phys. Chem. B,2004, 108(45):17369-17377
[22]Harris P J F. Solid state growth mechanisms for carbon nanotubes.Carbon,2007, 45(2):229-239
[23]Gorbunov A, Jost O, Pompe W, et al. Solid-liquid-solid growth mechanism of single-wall carbon nanotubes.Carbon,2002, 40(1):113-118
[24]Moisala A, Nasibulin A G, Kauppinen E I. The role of metal nanoparticles in the catalytic production of singlewalled carbon nanotubes:a review.J. Phys.: Condens. Matter,2003, 15(42):0-S3035

文章导航

/