研究论文

脉冲激光沉积MnF2薄膜的电化学性能

  • 崔艳华 ,
  • 薛明喆 ,
  • 胡 可 ,
  • 李 达 ,
  • 汪小琳 ,
  • 苏 伟 ,
  • 刘效疆 ,
  • 孟凡明 ,
  • 傅正文
展开
  • (1. 中国工程物理研究院 核物理与化学研究所, 绵阳 621900; 2. 中国工程物理研究院 电子工程研究所, 绵阳 621900; 3. 复旦大学 化学系, 激光化学研究所, 材料科学系, 上海市分子催化和功能材料重点实验室, 上海 200433)

收稿日期: 2009-04-21

  修回日期: 2009-09-08

  网络出版日期: 2010-02-20

Electrochemical Properties of MnF2 Films Fabricated by Pulsed Laser Deposition

  • CUI Yan-Hua ,
  • XUE Ming-Zhe ,
  • HU Ke ,
  • LI Da ,
  • WANG Xiao-Lin ,
  • SU Wei ,
  • LIU Xiao-Jiang ,
  • MENG Fan-Ming ,
  • FU Zheng-Wen
Expand
  • (1. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China; 2. Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900, China; 3. Department of Chemistry and Laser Chemistry Institute, Department of Materials Science, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China)

Received date: 2009-04-21

  Revised date: 2009-09-08

  Online published: 2010-02-20

摘要

采用脉冲激光沉积法在不锈钢基片上制备了纳米结构的MnF2薄膜. 充放电测试显示该薄膜在2μA/cm2的放电电流下, 前50次循环具有350~530mAh/g的可逆容量.在循环伏安测试中得到了0.5和1.0V的可逆氧化还原峰,分别代表了MnF2在充放电时的可逆反应. 薄膜的晶体结构和形貌采用X射线衍射仪(XRD)和扫描电子显微镜(SEM)分析, 充放电后薄膜的组成与结构通过高分辨电子显微镜和选区电子衍射来表征. 实验结果揭示了纳米结构MnF2薄膜与Li的电化学反应机理, LiF在首次放电后形成的纳米粒子在过渡金属Mn颗粒的驱动下, 可以发生可逆的分解和形成. MnF2薄膜较小的极化和较高的容量使其可用作锂离子电池阳极材料.

本文引用格式

崔艳华 , 薛明喆 , 胡 可 , 李 达 , 汪小琳 , 苏 伟 , 刘效疆 , 孟凡明 , 傅正文 . 脉冲激光沉积MnF2薄膜的电化学性能[J]. 无机材料学报, 2010 , 15(2) : 145 -150 . DOI: 10.3724/SP.J.1077.2010.00145

Abstract

Nanostructured MnF2 thin films were fabricated by using pulsed laser deposition on stainless steel substrate at room temperature. The reversible discharge capacities of MnF2 thin film electrode in the ranges from 350mAh/g to 530mAh/g was achieved during the first 50 cycles at the current of 2μA/cm2 from cyclic voltammograms curves of Li/MnF2 cell. Reduction and oxidation peaks at 0.5V and 1.0V were detected which indicated the reversible formation and decomposition of reaction of MnF2. The structure and morphology of the as-deposited films were characterized by X-ray diffraction and scan electronic microscopy. The electrochemical reaction of MnF2 thin film electrode was investigated by the high-resolution transmission electron microscope and selected-area electron diffraction measurements. The results demonstrated that nanosized manganese particles formed in initial discharge process could reversible drive the decomposition and formation of LiF. The low polarization and high capacity of MnF2 thin film show that it is a promising lithiumstorage materials for future rechargeable lithium batteries.

参考文献

[1]Poizot P, Laruelle S, Grugeon S, et al. Nano-sizedtransitionmetaloxidesas negative-electrode materials for lithiumion batteries. Nature, 2000, 407: 496-499.

[2]Pereira N, Dupont L, Tarascon J M, et al. Electrochemistry of Cu3N with lithium a complex system with parallel processes. J. Electrochem. Soc., 2003, 150(9): A1273-1286.

[3]Pereira N, Klein L C, Amatucci G G, et al. The electrochemistry of Zn3N2 and LiZnN a lithium reaction mechanism for metal nitride electrodes. J. Electrochem. Soc., 2002, 149(3): A262-A271.

[4]王 颖, 刘文元, 傅正文, 等(WANG Ying, et al). Mn4N薄膜与锂的电化学反应性能.物理化学学报(Acta Phys.-Chim. Sin.), 2006, 22(1): 65-70.

[5]Débart A, Dupont L, Patrice R, et al. Reactivity of transition metal (Co, Ni, Cu) sulphides vs lithium: the intriguing case of the copper sulphide. Solid State Sci., 2006, 8(6): 640-651.

[6]Souza D C S, Pralong V, Jacobson A J, et al. A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry. Science, 2002, 296(5575): 2012-2015.

[7]Bichat M P, Politova T, Pascal J L, et al. Electrochemical reactivity of Cu3P with lithium. J. Electrochem. Soc., 2004, 151(2): A2074-A2081.

[8]Silva D C C, Crosnier O, Ouvrard G., et al. Reversible lithium uptake by FeP2. Electrochem. SolidState Lett., 2003, 6(8): A162-A165.

[9]Gillot F, Boyanov S, Dupont L, et al. On the reactivity of Li8-yMnyP4 toward lithium. Chem. Mater., 2005, 17(25): 3627-3635.

[10]Wang K, Yang J, Xie J Y, et al. Electrochemical reactions of lithium with CuP2 and Li1.75Cu1.25P2 synthesized by ballmilling. Electrochem. Commun., 2003, 5(6): 480-483.

[11]薛明喆, 傅正文(XUE Ming-Zhe, et al). 脉冲激光沉积法制备FeSe薄膜电极及其电化学性质. 化学学报(Acta Chim. Sinica), 2007, 65(23): 2715-2719.

[12]Xue M Z, Fu Z W. Lithium electrochemistry of NiSe2: a new kind of storage energy material. Electrochem. Commun., 2006, 8(12): 1855-1862.

[13]Li H, Richter G, Maier J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv. Mater. (Weinheim, Ger.), 2003, 15(19): 736-739.

[14]Li H, Balaya P, Maier J. Listorage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc., 2004, 151(11): A1878-A1885.

[15]Badway F, Pereira N, Cosandey F, et al. Carbon metal fluoride nanocomposites high-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J. Electrochem. Soc., 2003, 150(10): A1318-A1327.

[16]Badway F, Pereira N, Cosandey F, et al. Carbon-metal fluoride nanocomposites structure and electrochemistry of FeF3∶C. J. Electrochem. Soc., 2003, 150(9): A1209-A1218.

[17]Plitz I, Badway F, AlSharab J, et al. Structure and electrochemistry of carbonmetal fluoride nanocomposites fabricated by solid-state redox conversion reaction. J. Electrochem. Soc., 2005, 152(2): A307-A315.

[18]Badway F, Mansour A N, Pereira N, et al. Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices.Chem. Mater., 2007, 19(17): 4129-4141.

[19]Makimura Y, Rougier A, Laffont L, et al. Electrochemical behaviour of low temperature grown iron fluoride thin films. Electrochem. Commun., 2006, 8(11): 1769-1774.

[20]Makimura Y, Rougier A, Tarascon J M. Pulsed laser deposited iron fluoride thin films for lithium-ion batteries. Appl. Suf. Sci., 2006, 252(13): 4587-4592.

[21]张 华, 周永宁, 吴晓京, 等(ZHANG Hua, et al). 脉冲激光沉积CuF2薄膜的电化学性能. 物理化学学报(Acta Phys.-Chim. Sin.), 2008, 24(07): 1287-1291.

[22]Zhang H, Zhou Y N, Sun Q, et al. Nanostructured nickel fluoride thin film as a new Li storage material. Solid State Sci., 2008, 10(9): 1166-1172.

[23]Fu Z W, Li C L, Liu W Y, et al. Electrochemical reaction of lithium with cobalt fluoride thin film electrode. J. Electrochem. Soc., 2005, 152(2): E50-E55.

[24]Zhou Y N, Zhang H, Xue M Z, et al. The electrochemistry of nanostructured In2O3 with lithium. J. Power Sources, 2006, 162(2): 1373-1378.

[25]Laruelle S, Grugeon S, Poizot P, et al. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc., 2002, 149(5): A627-A634.

文章导航

/