研究论文

树枝状与球状PbS纳米结构的组装合成及其形成机理研究

  • 糜裕宏 ,
  • 张孝彬 ,
  • 季振国 ,
  • 倪华良 ,
  • 祝华云 ,
  • 周胜名
展开
  • (1. 杭州电子科技大学 电子信息学院, 杭州 310018; 2. 浙江大学 硅材料国家重点实验室, 杭州 310027)

收稿日期: 2009-06-01

  修回日期: 2009-07-16

  网络出版日期: 2010-02-20

Assembly Synthesis and Formation Mechanism of Dendritic and Spherical PbS Nanostructures

  • MI Yu-Hong ,
  • ZHANG Xiao-Bin ,
  • JI Zhen-Guo ,
  • NI Hua-Liang ,
  • Zhu Hua-Yun ,
  • ZHOU Sheng-Ming
Expand
  • (1. College of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China; 2. State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China)

Received date: 2009-06-01

  Revised date: 2009-07-16

  Online published: 2010-02-20

摘要

以醋酸铅为铅源, 硫代乙酰胺为硫源, 在表面活性剂SDS单独作用和表面活性剂SDS和CTAB共同作用下可选择性地组装合成出颗粒以相同晶面粘连组装成的单晶树枝状PbS纳米结构和颗粒以不相同晶面粘连组装成的多晶球状PbS纳米结构, 而且提高反应物浓度能起到调节树枝状和球状PbS纳米结构尺寸的作用. 对树枝状和球状PbS纳米结构的形成机理进行了初探, 发现SDS单独作用时其烷基链起到的软模板作用有利于PbS小颗粒组装成树枝状的PbS纳米结构. 当反应溶液中再加入适量的CTAB时, 它在溶液中形成微胶束起到了软模板作用, 迫使颗粒粘连组装成球状PbS纳米结构, 有效地限制树枝状结构的生长.

本文引用格式

糜裕宏 , 张孝彬 , 季振国 , 倪华良 , 祝华云 , 周胜名 . 树枝状与球状PbS纳米结构的组装合成及其形成机理研究[J]. 无机材料学报, 2010 , 15(2) : 135 -140 . DOI: 10.3724/SP.J.1077.2010.00135

Abstract

Single crystal dendritic and polycrystalline spherical PbS nanostructures were synthesized selectively with the assistance of surfactants sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) using Pb(Ac)2 as the plumbum source and TAA as the sulfur source. When the surfactant SDS is used only, the single crystal dendritic PbS nanostructure assembled by nanoparticles through the same crystallographic plane is synthesized. While the surfactants SDS and CTAB are used together, the polycrystalline spherical PbS nanostructure assembled by nanoparticles through the different crystallographic plane is fabricated. It is found that the size of the dendritic and spherical PbS nanostructures can be controlled by the concentration of reactants. Finally, The possible growth mechanism is discussed. It is found that the alkyl chain of SDS may work as a soft template to help the little PbS nanoparticles assemble into dendritic nanostructure while the surfactant SDS is used only. When another surfactant CTAB is added, the formed CTAB micelle in the solution will confine the growth of the dendritic nanostructure and the nanoparticles are obliged to assemble into spherical PbS nanostructure.

参考文献

[1]Gaponik N, Wolf A, Marx R, et al. Three-dimensional self-assembly of thiol-capped CdTe nanocrystals: gels and aerogels as building blocks for nanotechnology. Adv. Mater., 2008, 20(22): 4257-4262.

[2]Kagan C R, Murray C B, Nirmal M, et al. Electronic energy transfer in CdSe quantum dot solids. Phys. Rev. Lett., 1996, 76(9): 1517-1520.

[3]Crooker S A, Hollingsworth J A, Tretiak S, et al. Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials. Phys. Rev. Lett., 2002, 89(18): 186802-1-4.

[4]Parthasarathy R, Lin X M, Jaeger H M. Electronic transport in metal nanocrystal arrays: the effect of structural disorder on scaling behavior. Phys. Rev. Lett., 2001, 87(18): 186807-1-4.

[5]Roest A L, Kelly J J, Vanmaekelbergh D, et al. Staircase in the electron mobility of a ZnO quantum dot assembly due to shell filling. Phys. Rev. Lett., 2002, 89(3): 36801-1-4.

[6]Zeng H, Li J, Liu J P, et al. Exchangecoupled nanocomposite magnets by nanoparticle self-assembly. Nature, 2002, 420(6914): 395-398.

[7]Guo S J, Dong S J, Wang E K. Monodisperse raspberry-like gold submicrometer spheres: large-scale synthesis and interface assembling for colloid sphere array. Cryst. Growth Des., 2008, 8(10): 3581-3585.

[8]Li Y J, Huang W J, Sun S G. An universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface. Angew. Chem. Int. Ed., 2006, 45(16): 2537-2539.

[9]Zhang C, Kang Z H, Shen E H, et al. Synthesis and evolution of PbS nanocrystals through a surfactant-assisted solvothermal route. J. Phys. Chem. B, 2006, 110(1): 184-189.

[10]Lee S M, Jun Y W, Cho S N, et al. Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nanobuilding blocks. J. Am. Chem. Soc., 2002, 124(38): 11244-11245.

[11]McDonald S A, Konstantatos G, Zhang S G, et al. Solutionprocessed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater., 2005, 4(2): 138-142.

[12]Levina L, Sukhovatkin W, Musikhin S, et al. Efficient infrared-emitting PbS quantum dots grown on DNA and stable in aqueous solution and blood plasma. Adv. Mater., 2005, 17(15):1854-1857.

[13]Choudhury K R, Sahoo Y, Jang S J, et al. Efficient photosensitization and high optical gain in a novel quantum-dot-sensitized hybrid photorefractive nanocomposite at a telecommunications wavelength. Adv. Funct. Mater., 2005, 15(5): 751-756.

[14]Ge J P, Wang J, Zhang H X, et al. Orthogonal PbS nanowire arrays and networks and their raman scattering behavior. Chem. Eur. J., 2005, 11(6): 1889-1894.

[15]Kuang D, Xu A, Fang Y, et al. Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process. Adv. Mater., 2003, 15(20): 1747-1750.

[16]Ellingson R J, Beard M, Johnson J C, et al. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano. Lett., 2005, 5(5): 865-871.

文章导航

/