研究论文

载钛(Ⅳ)锌(Ⅱ)纳米羟基磷灰石的制备及抗菌性能研究

  • 赵彩霞 ,
  • 张伟德
展开
  • (华南理工大学 化学与化工学院应用化学系, 广州 510640)

收稿日期: 2009-03-18

  修回日期: 2009-04-29

  网络出版日期: 2010-04-22

Preparation and Antibacterial Properties of Titanium (Ⅳ) and Zinc (Ⅱ) Co-doped Nanohydroxyapatite

  • ZHAO Cai-Xia ,
  • ZHANG Wei-De
Expand
  • (Department of Applied Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China)

Received date: 2009-03-18

  Revised date: 2009-04-29

  Online published: 2010-04-22

摘要

以硝酸钙、硫酸钛、磷酸和氨水等为原料, 通过共沉淀水热合成和离子交换法, 制备了钛(Ⅳ)与锌离子共掺杂的羟基磷灰石(Ca10(PO4)6(OH)2, HAp)白色纳米粒子(TiZnHAp). 采用XRD、TEM、EDS、UVVis和ESR测试对样品的结构、形貌、组成、吸光性能以及催化氧化活性进行了表征. 针对大肠杆菌和金黄色葡萄球菌进行了抗菌实验测试, 研究材料在黑暗和室内弱紫外光下的抗菌活性. 结果表明, 钛(Ⅳ)的掺杂没有明显改变HAp晶粒的形态和尺寸, 而钛(Ⅳ)的掺杂能够提高HAp的吸光性能和紫外光催化氧化能力. 相对于ZnHAp和TiHAp颗粒, 在室内弱紫外光下钛(Ⅳ)的光催化分解细菌与锌离子抗菌协同作用使TiZnHAp具有优良的抗菌效果. 同时, 离子溶出测试实验结果表明, TiZnHAp具有长效抗菌性.

本文引用格式

赵彩霞 , 张伟德 . 载钛(Ⅳ)锌(Ⅱ)纳米羟基磷灰石的制备及抗菌性能研究[J]. 无机材料学报, 2009 , 24(6) : 1243 -1248 . DOI: 10.3724/SP.J.1077.2009.01243

Abstract

Hydroxyapatite (Ca10(PO4)6(OH)2: HAp) nanoparticles co-doped by Ti (Ⅳ) and Zn2+ (TiZnHAp) were prepared by co-precipitation and ion-exchange method. The structure, morphology, composition, photo absorption property and catalytic activity of the samples were characterized using XRD, TEM, EDS, UV-Vis and ESR. Escherichia coli and Staphylococcu aureus were selected as testing bacterias to evaluate the bactericidal activity of the samples in darkness and under weak UV light irradiation. The results indicate that the morphology and size of the HAp crystal do not change significantly with the doping of titanium (Ⅳ). Doping with titanium (Ⅳ) can improve the photo absorption property and the UV catalytic activity. Compared with ZnHAp and TiHAp, TiZnHAp has very high bactericidal activity under weak UV light irradiation which can be attributed to the synergistic effect of the Ti(Ⅳ) photocatalytic decomposition activity and the Zn2+ antibacterial activity in TiZnHAp. Ions releasing test indicates that TiZnHAp maintains longlasting antibacterial effect.

参考文献

[1]Karpov A S, Nuss J, Jansen M, et al. Solid State Sci., 2003, 5(9):1277-1283.
[2]Feng Q L, Kim T N, Wu J, et al. Thin Solid Films, 1998, 335(1/2):214-219.
[3]Kim T N, Feng Q L, Kim J O, et al. J. Mater. Sci. Mater. Med., 1998, 9(3):129-134.
[4]季君晖, 史维明. 抗菌材料. 北京:化学工业出版社, 2003.
[5]Hu C, Guo J, Qu J, et al. Appl. Catal. B: Environ., 2007, 73(3/4):345-353.
[6]Lü G Y, Li Y B, Yang A P, et al. Materials Science Forum, 2006, 510-511:78-81.
[7]Wakamura M, Hashimoto K, Watanabe T. Langmuir, 2003, 19(8):3428-3431.
[8]Kang Y S, McManus H J D, Liang K, et al. J Phys. Chem., 1994, 98(3):1044-1048.
[9]Okazaki M, Shiga T, Sakata S, et al. J. Phys. Chem., 1988, 92(6):1402-1404.
[10]Johnson O W, Ohlsen W D, Kingsbury P I. Phys. Rev., 1968, 175(3):1102-1109.
[11]Iwamoto N, Hidaka H, Makino Y. J. Noncrystalline Solids, 1983, 58(1):131-141.
[12]Chester P F. J. Appl. Phys., 1961, 32(10):2233-2236.
[13]Sunada K, Watanabe T, Hashimoto K. Environ. Sci. Technol., 2003, 37(20):4785-4789.
[14]Vermeulen N, Keeler W J, Nandakumar K, et al. Biotechnol. Bioeng., 2008, 99(3):550-556.
[15]Hockberger P E. Photochem. Photobiol., 2002, 76(6):561-579.
文章导航

/