研究论文

微波辅助溶胶凝胶自燃烧一步合成六角铁酸钡纳米晶及其磁性能

  • 刘俊亮 ,
  • 郭翠静 ,
  • 张 伟 ,
  • 纪荣进 ,
  • 曾燕伟
展开
  • (南京工业大学 材料科学与工程学院, 南京 210009)

收稿日期: 2009-02-17

  修回日期: 2009-04-29

  网络出版日期: 2010-04-22

One-step Synthesis of Barium Hexaferrite Nanocrystals via Microwaveassisted Sol-Gel auto-Combustion and their Magnetic Properties

  • LIU Jun-Liang ,
  • GUO Cui-Jing ,
  • ZHANG Wei ,
  • JI Rong-Jin ,
  • ZENG Yan-Wei
Expand
  • (School of Materials Science and Engineering, Nanjing University of Technology, Nanjing 210009, China)

Received date: 2009-02-17

  Revised date: 2009-04-29

  Online published: 2010-04-22

摘要

以乙二胺四乙酸柠檬酸+乙二醇为复合络合剂, 冷冻干燥去除溶胶中水分, 提高凝胶中金属离子与氧化剂的分布均匀性, 并利用微波辅助溶胶凝胶自燃烧一步合成了六角铁酸钡纳米晶. 所得纳米晶近于球形, 尺寸在50~100nm, 其饱和磁化强度为338.5kA/m, 矫顽场仅为20.7kA/m. 分析表明, 富氧条件有利于避免自燃烧过程中由于有机物还原引起的铁元素分布不均匀, 从而有利于铁酸钡的相形成.

本文引用格式

刘俊亮 , 郭翠静 , 张 伟 , 纪荣进 , 曾燕伟 . 微波辅助溶胶凝胶自燃烧一步合成六角铁酸钡纳米晶及其磁性能[J]. 无机材料学报, 2009 , 24(6) : 1193 -1196 . DOI: 10.3724/SP.J.1077.2009.01193

Abstract

Single phase barium hexaferrite nanocrystals were innovatively onestep synthesized via a microwave-assisted sol-gel auto-combustion method using citric acid and ethylene diamine tetraacetic acid as composite chelating agents, and freeze-drying technique was used to remove sols’ moisture that effectively improve the spatial distribution homogeneity of metal ions and oxidant in the gels. The obtained barium hexaferrite nanocrystals is characterized by fluffy particle aggregates with the diameter ranging from 50nm to 100nm. The nanocrystals contain single magnetic domains with a low coercive field of 20.7kA/m and a high saturation magnetization of 338.5kA/m. The analysis shows that keeping rich oxidant in the autocombustion process can prohibit the reduction of iron ions by the organic fragment from the decomposition of fuels and promote the phase formation of barium hexaferrite.

参考文献

[1]Went J L, Ratenau G W, Gorter E W, et al. Philips Tech. Rev., 1952, 13:194-208.
[2]Sugimoto S, Kpndo S, Okayama K, et al. IEEE Trans. on Magn., 1999, 35(5):3154-3156.
[3]Sui X Y, Scherge M, Kryder M H, et al. J. Magn. Magn. Mater., 1996,155(1/2/3): 132-139.
[4]Harris V G, Chen Z H, Chen Y J, et al. J. Appl. Phys., 2006, 99: 08M911-1-5.
[5]Chen Y J, Anton L G, Chen T Y, et al. J. Appl. Phys., 2007, 101: 09M501-1-3.
[6]Chen W F, Li F S, Yu J Y, et al. Mater. Res. Bull., 2006, 41(12):2318-2324.
[7]Tian C G, Liu J L, Cai J, et al. J. Alloy. Compd., 2008, 458(1/2):378-382.
[8]Tian C G, Liu J L, Guo C J, et al. J. Alloy. Compd., 2008, 460(1/2):646-650.
[9]Huang J G, Zhang H R, Li W L. Mater. Res. Bull., 2003, 38(1):149-159.
[10]Mali A, Ataie A.Ceram. Int., 2004, 30(7):1979-1983.
[11]Mali A, Ataie A. J. Alloy. Compd., 2005, 399(1/2):245-250.
[12]Mali A, Ataie A. Scripta Mater., 2005, 53(9):1065-1070.
[13]Mali A, Ataie A. J. Electroceram., 2008,21(1-4):357-360.
[14]Xu G Q, Ma H L, Zhong M J, et al. J. Magn. Magn. Mater., 2006, 301(2): 383-388.
[15]Rakshit S K, Parida S C, Ziley S, et al. J. Solid State Chem., 2004, 177(4/5):1146-1156.
文章导航

/