研究论文

Al2O3含量对Al2O3/LiTaO3复合陶瓷介电性能的影响

  • 张有凤 ,
  • 周 玉 ,
  • 贾德昌 ,
  • 孟庆昌
展开
  • (1. 上海工程技术大学 材料工程学院, 上海 201620; 2. 哈尔滨工业大学 特种陶瓷研究所, 哈尔滨 150001)

收稿日期: 2008-12-29

  修回日期: 2009-05-12

  网络出版日期: 2010-04-22

Effect of Al2O3 Content on Dielectric Properties of Al2O3/LiTaO3 Composite Ceramics

  • ZHANG You-Feng ,
  • ZHOU Yu ,
  • JIA De-Chang ,
  • MENG Qing-Chang
Expand
  • (1.Material Engineering College, Shanghai University of Engineering Science, Shanghai 201620, China; 2. Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001, China)

Received date: 2008-12-29

  Revised date: 2009-05-12

  Online published: 2010-04-22

摘要

采用热压烧结法制备了Al2O3/LiTaO3 (ALT) 陶瓷复合材料, 研究了Al2O3不同体积含量(5vol%、10vol%、15vol%和20vol%)对LiTaO3压电陶瓷介电性能的影响. 结果表明:随着频率的增加, 不同Al2O3含量的ALT陶瓷复合材料的介电常数和介电损耗均降低, 但降低的幅度不同. 少量Al2O3(5vol%)的添加既能增大材料的介电常数同时又降低了材料的介电损耗, 但是随着Al2O3含量的继续增加, ALT陶瓷复合材料的介电常数和介电损耗都增大, 其居里温度先升高后降低. Al2O3作为第二相不但能促进LiTaO3陶瓷烧结致密,而且对ALT陶瓷复合材料的介电性能也有提高.

本文引用格式

张有凤 , 周 玉 , 贾德昌 , 孟庆昌 . Al2O3含量对Al2O3/LiTaO3复合陶瓷介电性能的影响[J]. 无机材料学报, 2009 , 24(6) : 1189 -1192 . DOI: 10.3724/SP.J.1077.2009.01189

Abstract

The effect of Al2O3 addition (5vol%, 10vol%, 15vol% and 20 vol%) on the dielectric properties of Al2O3/LiTaO3(ALT) composite ceramics prepared by hot-press sintering were investigated. The results show that the dielectric constant and dielectric loss of ALT composite ceramics decrease with the increasing frequency. Comparing with pure LiTaO3 ceramics, adding 5vol% Al2O3 can increase its dielectric constant and decrease its dielectric loss, while the dielectric constant and dielectric loss of ALT composite ceramics increase consequently with more Al2O3 adding. With Al2O3 contents increasing, the Curie temperature initiately increases and then decreases, reaching the maximum at 5vol% Al2O3. Thus, Al2O3/LiTaO3(ALT) composite ceramics is a good composite system because the addition of the second phase Al2O3 promotes sintering of LiTaO3, and slightly improves its dielectric properties.

参考文献

[1]许煜寰.铁电与压电材料, 北京: 科学出版社, 1978. 241-271.
[2]Zhang Tao, Dong Yan-Tang, Geng Tao, et al. Mater. Chem. and Phys., 2009, 114(1):257-260.
[3]Gruber John B, Allik Toomas H, Sardar Dhiraj K, et al. J. Luminescence, 2006, 117(2): 233-238.
[4]Nakamura Masaru, Takekawa Shunji, Liu Yuowen, et al. J. Crystal Growth, 2009, 311(2):272-277.
[5]Bamba N, Yokouchi T, Takaoka J, et al. Ferroelectrics, 2004, 304(1):135-138.
[6]Shimada S, Kodaira K, Matsushita T. J. Mater. Sci., 1984, 19(4): 1385-1390.
[7]罗玉长. 轻金属, 1995(8): 5-10.
[8]刘艳改. 含钽酸锂压电陶瓷颗粒的氧化铝基陶瓷复合材料的组织结构、性能与韧化机制. 哈尔滨: 哈尔滨工业大学博士论文, 2002.
[9]张有凤, 周 玉, 贾德昌, 等. 稀有金属材料与工程, 2005, 34(增刊1): 552-554.
[10]Zhang You-Feng, Zhou Yu, Jia De-Chang, et al. Mater. Sci. Eng. A, 2007, 448(1/2): 330-334.
[11]周歧发, 姚 熹. 科学通报, 1992, 37(7): 665-667.
[12]关振铎, 张中太, 焦金生. 无机材料物理性能. 北京: 清华大学出版社, 2005.
[13]曲远方. 功能陶瓷的物理性能. 北京: 化学工业出版社, 2006.
[14]凌远志, 熊茂仁, 陈 楷. 功能材料, 1998, 29(5): 530-533.
[15]姜胜林, 王莜珍, 张绪礼. 电子元件与材料, 1995, 14(1): 34-36.
文章导航

/