采用传统常压固相烧结工艺制备了掺杂0.8at%BiFeO3(BF)的K0.5Na0.5NbO3(KNN) 无铅压电陶瓷,着重研究了烧结温度与保温时间对陶瓷的晶体结构、相转变、致密度与压电、介电性能的影响. 研究结果表明, 所有陶瓷样品都为单一的钙钛矿结构, 烧结温度与保温时间对陶瓷样品的室温晶体结构与相转变温度几乎没有影响, 但对陶瓷的表面形貌、密度和压电性能有较大的影响. 当保温时间为3h,在1100℃至1150℃范围内, 随烧结温度的升高,陶瓷的压电常数d33、平面机电耦合系数Kp及机械品质因数Qm均一直升高, 介电损耗tanδ则显著降低. 当烧结温度为1150℃时, 随保温时间的增加, 陶瓷的压电性能先显著提高后基本保持不变. 1150℃保温2h烧结的陶瓷获得良好的性能:密度ρ=4.50g/cm3(致密度为95.63%), d33=132pC/N, Kp=45%, Qm=333.73, tanδ=2.39%.
江民红
,
陈何欣
,
刘心宇
,
杨理清
,
周昌荣
. 无铅压电陶瓷K0.5Na0.5NbO3-BiFeO3的烧结工艺与压电性能研究[J]. 无机材料学报, 2009
, 24(6)
: 1178
-1182
.
DOI: 10.3724/SP.J.1077.2009.01178
Leadfree BiFeO3 (BF) doped K0.5Na0.5NbO3 (KNN) piezoelectric ceramics were prepared by a traditional ceramic processing. The effects of sintering temperature and holding time on the microstructure, phase transition, density and piezoelectric properties of BF doped KNN ceramics were investigated. The results show that all specimens exhibit a pure perovskite structure. The surface micrograph, density and piezoelectric properties of the ceramics depend strongly on the sintering temperature and holding time. When being sintered at temperature from 1100℃ to 1150℃ for 3h, the d33, Kp and Qm of the ceramics increase, while the tanδ decreases with the sintering temperature increasing. When being sintered at 1150℃ for 1h to 3h, the d33, Kp and Qm of the ceramics increase firstly and then remain unchanged, while the tanδ decreases firstly and then also remains unchanged with the holding time increasing. The BFdoped KNN ceramics sintered at 1150℃ for 2h exhibit excellent properties (ρ=4.50g/cm3, d33=132pC/N, Kp=45%, Qm=333.73, tanδ=2.39%).
[1]张利民,张波萍,李敬锋, 等. 硅酸盐学报, 2007, 35(1):1-5.
[2]唐福生, 杜红亮, 刘代军, 等(TANG Fu-Sheng, et al). 无机材料学报(Journal of Inorganic Materials), 2007, 22(2):323-327.
[3]张利民,张波萍,李敬锋, 等. 稀有金属材料与工程, 2007, 36(s1):509-512.
[4]Hiruma Y, Nagata H, Takenaka T. Jpn. J. Appl. Phys., 2006, 45(9B):7409-7412.
[5]孙 勇, 肖定全, 吴 浪, 等. 功能材料, 2007, 38(8):1225-1228.
[6]Du H L, Tang F S, Liu D J, et al. Mater. Sci. Eng. B, 2007, 136(2/3):165-169.
[7]Zhang S J, Xia R, Shrout TR, et al. J. Appl. Phys., 2006, 100(10):104108-1-6.
[8]Ringgaard E, Wurlitzer T. J. Eur. Ceram. Soc., 2005, 25(12): 2701-2706.
[9]Maeder M D, Damjanovic D, Setter N. J. Electroceram., 2004, 13(1/2/3): 385-392.
[10]Cheng J, Li N, Cross L E. J. Appl. Phys., 2003, 94(8): 5153-5157.
[11]张 琼, 苗鸿雁, 谈国强. 硅酸盐通报, 2007, 26(1):118-122.
[12]路朋献, 王改民, 马秋花, 等. 中国陶瓷, 2006, 42(6):18-20.
[13]Zuo R Z, Ye C, Fang X S. J. Phys. Chem. Solids, 2008, 69(1): 230-235.
[14]Wu J G, Xiao D Q, Wang Y Y, et al. J. Appl. Phys., 2007, 102(11):114113-1-5.