分别采用非水解和水解溶胶-凝胶法合成钛酸铝粉体,利用FT-IR、DTA-TG、XRD、SEM等方法研究了溶胶-凝胶转变和合成相变化过程及粉体烧结性能.结果发现:水解凝胶过程中Al3+以网络外离子形式富集于Ti—O—Ti凝胶网络之间,凝胶依次晶化成金红石和刚玉,再通过固相扩散在1350℃时合成钛酸铝,粉体粒径为1~2μm,比表面积仅3.2m2/g,1400℃烧结后抗弯强度为7.2MPa.非水解凝胶化过程中Al3+和Ti4+通过聚合共同形成凝胶网络,其在网络结构中地位趋同,凝胶在 750℃已直接由无定型晶化为钛酸铝,粉体粒径为0.1~0.3μm,比表面积与抗弯强度分别为水解法样品的35倍和2.3倍,性能较好.
Aluminum titanate powder was synthesized by nonhydrolytic and hydrolytic sol-gel method, respectively. The sol-gel process, the phase transformation and the sintering properties of powders were studied by TG-DTA, XRD, FT-IR and SEM analysis. The results show that during the hydrolytic sol-gel process, the Al3+ ions mostly exist in the interspace of Ti—O—Ti network. As a result, only rutile and corundum are separated from the hydrolytic gel, the Al2TiO5 has to be synthesized at 1350℃. Comparatively, the gel network is formed through the polymerization reaction of Al3+ and Ti4+ ions in nonhydrolytic sol-gel process, these ions occupy the similar position to build the gel network together. Therefore, the armorphous phase is directly crystallized at 750℃ as aluminum titanate. The particle size and specific surface area of Al2TiO5 powders prepared by hydrolytic sol-gel method are 1-2μm and 3.2m2/g. It is dropped to 0.1-0.3μm under nonhydrolytic sol-gel method, while the specific surface area of the powders is 35 times of hydrolytic sol-gel sample. The bending strength of the sintered Al2TiO5 ceramic prepared by nonhydrolytic sol-gel method is 2.3 times of hydrolytic sol-gel sample, which is only 7.2MPa. It indicates that the properties of Al2TiO5 powders prepared by nonhydrolytic sol-gel method are better than that of hydrolytic sol-gel sample.
1]Thomas H A J, Stevens R. Br. Ceram. Trans., 1989, 88 (4): 144-151.
[2]Thomas H A J, Stevens R. Br. Ceram. Trans., 1989, 88 (4): 184-190.
[3]Thomas H A J, Stevens R. Br. Ceram. Trans., 1989, 88 (4): 229-233.
[4]Huang Y X, Senos A M R. J. Mater. Res. Bull., 2002, 37 (1): 99-110.
[5]薛明俊, 孙承绪. 华东理工大学学报(自然科学版),2000, 26 (1): 66-69.
[6]Corriu R J P, Leclerq D. Angew. Chem. Int. Engl., 1996, 35 (13): 1420-1436.
[7]Andrianainarivelo M, Corriu R J P, Leclercq D, et al. Chem. Mater., 1997, 9 (5): 1098-1102.
[8]Vioux A. Chem. Mater, 1997, 9(11): 2292-2299.
[9]鄢洪建, 李桂英, 苏志珊. 四川大学学报(自然科学版), 2004, 41 (3): 670-672.
[10]Hay J N, Raval H M. J. Mater. Chem., 1998, 8 (5): 1233-1239.
[11]Linacero R, Rojas-Cervantes M L, Lopez-Gonzalez J D D. J. Mater. Sci., 2000, 35 (13): 3269-3272.
[12]Bradley D C, Methrotra R C , Gaul D P. Metal Alkoxides. New York: Academic Press, 1978, 1-25: 116-122.
[13]Olivier Poncelet, Jean Guilment, Sylvie Truchet. Materials Research Society Symposium Proceedings, Better Ceramics Through Chemistry Ⅵ, Materials Research Society:Pittsburgh, 1994, 346:655-660.
[14]Bradley D C, Hancock D C, Wardlaw W. J. Chem. Soc., 1952, 2773-2778.
[15]Li Yunjiao, Demopoulos George P. Hydrometallurgy, 2008, 90 (1):26-33.
[16]Sivakumar S, Krishna Pillai P, Mukundan P, et al. Mater. Lett., 2002, 57 (2):330-335.
[17]Joe I H, Vasudevan A K, Aruldhas G, et al. J. Solid State Chem., 1997, 131 (1):181-184.
[18]Lia A Stanciu, Joanna R Groza, Jitianu A, et al. Mater. Manuf. Processes., 2004, 19 (4): 641-650.
[19]Alain C Pierre. Introduction to Sol-Gel Processing. Massachusetts: Kluwer Academic Publishers, 1998:45-48.