研究论文

酸催化溶胶-凝胶法Eu2+、Gd3+共掺杂TiO2的制备及光催化活性

  • 周 艺 ,
  • 黄可龙1 ,
  • 朱志平 ,
  • 杨 波 ,
  • 夏畅斌 ,
  • 肖汉宁
展开
  • 1. 中南大学化学化工学院, 长沙 410083; 2. 长沙理工大学化学与环境工程学院, 长沙 410077

收稿日期: 2008-01-03

  修回日期: 2008-05-29

  网络出版日期: 2008-09-20

Preparation and Photocatalysis Activity of Eu2+/Gd3+ codoped Nano-TiO2 Multiplex Photocatalyst from Sol-Gel Process Catalyzed with Acid

  • ZHOU Yi ,
  • HUANG Ke-Long ,
  • ZHU Zhi-Ping ,
  • YANG Bo ,
  • XIA Chang-Bin ,
  • XIAO Han-Ning
Expand
  • 1. College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; 2. College of Chemistry and Environment Engineering, Changsha University of Science and Technology, Changsha 410076, China

Received date: 2008-01-03

  Revised date: 2008-05-29

  Online published: 2008-09-20

摘要

采用酸催化溶胶-凝胶法制备了Gd3+、Eu2+两种稀土金属离子混合掺杂的复合TiO2光催化剂, 通过TEM、XRD、UV-Vis等分析手段对产物进
行了表征, 结果表明: 样品均呈锐钛矿型结构, 颗粒尺寸的变化只与掺杂离子总量有关, 掺杂量为1.0%时达最小值; 一定比例Eu2+、Gd3+的混合掺杂, 能增强可见光范围内光响应. 以甲基橙为目标降解物研究了不同比例Eu2+、Gd3+混合掺杂对纳米二氧化钛光催化活性的影响, Gd3+、Eu2+适合掺杂量范围分别为0.1%~1.0%和0.5%~1.5%. Eu2+、Gd3+混和掺入TiO2光催化剂中产生协同效应, 探讨了Eu2+和Gd3+与TiO2之间的相互作用, 讨论了光催化活性与催化剂性质的关系.

本文引用格式

周 艺 , 黄可龙1 , 朱志平 , 杨 波 , 夏畅斌 , 肖汉宁 . 酸催化溶胶-凝胶法Eu2+、Gd3+共掺杂TiO2的制备及光催化活性[J]. 无机材料学报, 2008 , 23(5) : 1085 -1088 . DOI: 10.3724/SP.J.1077.2008.01085

Abstract

A new nano-TiO2 multiplex photocatalyst codoped with Eu2+ and Gd3+ was prepared by a modified acidic sol-gel process. TEM and XRD results demonstrate that as-produced samples are anatase structure, and the crystallite size has relationship
only with total doped Eu2+/Gd3+ content and the minimum size appeares at 1% doped content. UV-Vis absorption spectra show
that Eu3+/Gd3+ codoping can enhance the visible light response of the TiO2. The photocatalyst activity of Eu2+/Gd3+ codoped TiO2 is evaluated by photodegradation of methyl orange in an aqueous solution under natural light irradiation, A synergetic effect is observed due to Eu2+/Gd3+ codoping, and the optimal doping concentration for Gd3+ and Eu2+ are in the range from 0.1% to 1.0% and 0.5% to 1.5% respectively. The relationship and function between Eu2+, Gd3+ and TiO2 are also discussed.

参考文献

[1] Hoffmann M R, Martin S T, Choi W, et al. Chem. Rev., 1995, 95 (1): 69-74.
[2] Li F B, Li X Z, Hou M F. Applied Catalysis B: Environmental, 2004, 48 (3): 185-194.
[3] 雅 菁, 贾 堤, 刘云兆. 硅酸盐学报, 2001, 29 (1): 90-92.
[4] 周武艺, 唐绍裘, 张世英, 等(ZHOU Wu-Yi, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (3): 587-592.
[5] Choi W, Termin A, Hoffmann M R. J. Phys. Chem., 1994, 98 (51): 3669-3679.
[6] 黄东升, 陈朝凤, 李玉花, 等. 无机化学学报, 2007, 23 (5): 738-742.
[7] Huang L H, Sun C, Liu Y L. Applied Surface Science, 2007, 253 (17): 7029-7035.
[8] 周 艺, 徐协文, 刘其城. 中南工业大学学报, 2002, 33 (4): 371-373.
[9] 张青红, 高 濂, 郭景坤(ZHANG Qing-Hong, et al). 无机材料学报(Journal of Inorganic Materials), 2000, 15 (3): 556-560.
[10] 尹荔松, 周歧发, 唐新贵. 功能材料, 1999, 30 (5): 498-511.
[11] 高 远, 徐安武, 祝静艳. 催化学报, 2001, 22 (1): 53-56.
[12] 魏子栋, 殷 菲, 谭 君. 化学通报, 2001, 64 (2): 76-80.
[13] 牛新书, 李红花, 蒋 凯. 电子元件与材料, 2004, 23 (8): 39-45.
[14] Dexter D L. J. Chem. Phys., 1953, 21 (5): 837-850.
[15] Yang P, Lu C, Hua N P. Mater. Lett., 2002, 57 (4): 794-801.
[16] 贾志宏, 李 立, 叶泽人. 高等学校化学学报, 2002, 23 (3): 349-352.
文章导航

/