研究论文

溶胶-凝胶生物活性玻璃超细粉体的制备与生物矿化性能研究

  • 陈晓峰 ,
  • 郭常亮 ,
  • 赵娜如 ,
  • 谢 林
展开
  • 华南理工大学材料科学与工程学院生物材料研究所, 特种功能材料教育部重点实验室, 广州 510640

收稿日期: 2007-11-09

  修回日期: 2007-12-29

  网络出版日期: 2008-09-20

Preparation and Biomineralization Research of Ultrafine Sol-gel Bioactive Glass Powders

  • CHEN Xiao-Feng ,
  • GUO Chang-Liang ,
  • ZHAO Na-Ru ,
  • XIE Lin
Expand
  • Biomaterials Research Institute, College of Materials Science and Engineering,The Key Laboratory of Specially Functional Materials, Ministry of Education,South China University of Technology, Guangzhou 510640, China

Received date: 2007-11-09

  Revised date: 2007-12-29

  Online published: 2008-09-20

摘要

通过溶胶-凝胶和湿法研磨工艺制备了粒径分布在1μm以下的生物活性玻璃超细粉体. 采用XRD、FTIR、SEM测试方法对研磨前后粉体在模拟生理溶液(SBF)中的生物矿化性能进行了对比分析与表征, 结果表明: 在SBF中两种粉体表面都生成了碳酸羟基磷灰石(HCA), 并且经湿法研磨后的溶胶-凝胶生物活性玻璃超细粉体的生物矿化速度显著提高. 通过对不同浸泡时间SBF溶液的pH值测定可知, 在同样反应时间情况下, 超细粉体浸泡液的pH值低于研磨前颗粒. 浸泡液的ICP测试也表明研磨前后玻璃样品的离子溶出规律有所不同.

本文引用格式

陈晓峰 , 郭常亮 , 赵娜如 , 谢 林 . 溶胶-凝胶生物活性玻璃超细粉体的制备与生物矿化性能研究[J]. 无机材料学报, 2008 , 23(5) : 1027 -1032 . DOI: 10.3724/SP.J.1077.2008.01027

Abstract

The ultrafine bioactive glass powder (uSBG) with particle size less than 1μm was prepared by sol-gel and wet grinding methods. The biomineralization properties in SBF of the two powders (uSBG and SBG) were analyzed and compared by using FTIR, XRD, SEM. The results indicate that hydroxyl-carbonate apatite (HCA) forms on the surface of the two samples and biomineralization rate of uSBG is prompted significantly by wet grinding. pH value of SBF solution immersed uSBG for different times is lower than that of SBF for SBG, and ICP tests show that the releasing rules of ions are different between uSBG and SBG.

参考文献

[1] Hench L L, Polak J M. Science, 2002, 295 (5557): 1014-1017.
[2] Miao X, Tan L P, Tan L S, et al. Materials Science and Engineering, 2007, 27 (2): 274-279.
[3] Richard M D, Aldo R B. J. Biomed. Mater. Res. Part A, 2005, 73A (1): 73-79.
[4] 陈晓峰, 李玉莉, 赵娜如. 硅酸盐通报, 2007, 26 (2): 247-251.
[5] 杨宇霞, 王迎军, 陈晓峰. 硅酸盐通报, 2004, 23 (6): 94-97.
[6] 李凤生, 刘宏英, 刘雪东, 等. 微纳米粉体制备与改性设备, 第一版. 北京: 国防工业出版社, 2004. 296-313.
[7] Kai Z, Hongwei Y, David C B, et al. J. Biomed. Mater. Res. Part A, 2003, 66A (4): 860-869.
[8] Tadashi K, Hiroaki T. Biomaterials, 2006, 27 (15): 2907-2915.
[9] Lenka M, Frank A M. Acta Biomaterialia, 2006, 2 (2): 181-189.
[10] Leonelli C, Lusvardi G. J. Non-Crystalline Solids, 2003, 316 (2): 198-216.
[11] Oliveira J M, Correia R N, Fernandes M H. Biomaterials, 2002, 23 (2): 371-379.
[12] Ragel C V, Vallet-Regi M. Biomaterials, 2002, 23 (9): 1865-1872.
[13] Salinas A J, Roman J, Vallet-Regi M, et al. Biomaterials, 2000, 21 (3): 251-257.
[14] Jipin Z, David C G. J. Biomed Mat. Res. Part B, 2000, 53 (6): 694-701.
[15] EL-Ghannm A, Ducheyne P, Shapiro I M. Biomaterials, 1997, 18 (4): 295-303.
[16] Marta C, David G, Kevin P. Biomaterials, 2005, 26 (14): 1665-1674.
[17] 张晓凯, 刘 玮, 陈晓峰. 化学物理学报, 2004, 17 (4): 495-498.
[18] 涂 杰, 王迎军, 陈晓峰, 等(TU Jie, et al). 无机材料学报(Journal of Inorganic Materials), 2007, 22 (1): 123-127.
文章导航

/