研究论文

化学气相沉积SiC膜{111}取向生长的原子尺度模拟

  • 刘翠霞 ,
  • 杨延清 ,
  • 黄斌 ,
  • 张荣军 ,
  • 罗贤 ,
  • 任晓霞
展开
  • 西北工业大学材料学院凝固技术国家重点实验室, 西安 710072

收稿日期: 2007-10-08

  修回日期: 2007-12-11

  网络出版日期: 2008-09-20

Atomic Scale Simulation of {111}-Oriented SiC Film Growth by Chemical Vapor Deposition Method

  • LIU Cui-Xia ,
  • YANG Yan-Qing ,
  • HUANG Bin ,
  • ZHANG Rong-Jun ,
  • LUO Xian ,
  • REN Xiao-Xia
Expand
  • School of Materials Science and Engineering, State Key Laboratory of Solidification Processing Northwestern Polytechnical University, Xi’an 710072, China

Received date: 2007-10-08

  Revised date: 2007-12-11

  Online published: 2008-09-20

摘要

在化学气相沉积SiC膜过程中, 分别考虑了化学反应的动力学以及基底表面原子的沉积与扩散, 利用动力学蒙特卡罗方法, 建立了SiC膜{111}取向的三维原子尺度模型, 使用MATLAB模拟了原子尺度的SiC膜{111}取向生长过程. 模拟结果表明: 膜的生长经历了小岛的生成、小岛的合并与扩展、小岛间达到动态平衡三个阶段. 随着温度的升高, 膜的生长速率、表面粗糙度以及膜的厚度都增大. 随着生长速率的增大, 表面粗糙度增大, 相对密度减小. 模拟结果与理论和实验具有较好的吻合性.

本文引用格式

刘翠霞 , 杨延清 , 黄斌 , 张荣军 , 罗贤 , 任晓霞 . 化学气相沉积SiC膜{111}取向生长的原子尺度模拟[J]. 无机材料学报, 2008 , 23(5) : 933 -937 . DOI: 10.3724/SP.J.1077.2008.00933

Abstract

In the process of SiC film fabricated by chemical vapor deposition method, kinetic process of chemical reaction in reaction zone and the deposition and diffusion of matrix surface were studied respectively. With kinetic Monte Carlo method, a three-dimensional atomic-scale of {111}-oriented SiC film is established and its growth process is simulated by MATLAB. The results show that the growth of film has three stages including form of little islets, mergence and expanding of islets and dynamic balance between islets. With the increase of substrate temperature, deposition rate, surface roughness and height of film all increase. When the deposition rate increases, surface roughness increases while relative density decreases. Moreover, the simulation results are in well agreement with the relevant theory and experimental result.

参考文献

[1] 邓清, 肖鹏, 熊翔. 粉末冶金材料科学与工程, 2006, 11 (5): 304--309.
[2] Sone H, Kaneko T, Miyakawa N. J. Crystal Growth, 2000, 219 (3): 245--252. [3] Abraham J A, White G M. J. Appl. Phys., 1970, 41 (4): 184--198.
[4] Bruschi P, Cagnoni P, Nannini A. Phys. Rev., 1997, 55 (12): 7955--7961.
[5] Battaile C C, Srolovitz D J, Cleinlk H. J. Chem. Phys., 1999, 111 (9): 4291--4299.
[6] Grujicic M, Lai S G. J. Mater. Sci., 1999, 34 (7): 7--19.
[7] 张禹. 北京科技大学博士学位论文, 2001. 34--62.
[8] Ganz M, Dorval N, Lefebvre M, et al. J. Electrochem. Sol., 1996, 143 (5): 1654--1661.
[9] Ning X J, Pirouz P. J. Mater. Res., 1991, 6 (10): 2234--2248.
[10] 陈敏, 魏合林, 刘祖黎, 等. 物理学报, 2001, 50 (12): 2446--2451.
[11] Dean J A. Lange’s Handbook of Chemistry, 16th ed.北京: 世界图书出版社北京公司, 2005. 649.
[12] 肖鹏, 徐永东, 黄伯云(XIAO Peng, et al).
无机材料学报(Journal of Inorganic Materials), 2002, 17 (4): 877--881.
[13] 张长瑞, 刘荣军, 曹英斌(ZHANG Chang-Rui, et al). 无机材料学报(Journal of Inorganic Materials), 2007, 22 (1): 153--158.
文章导航

/