研究论文

掺Ho3+钛酸锶钡薄膜的结构及发光性能研究

  • 潘瑞琨 ,
  • 王军 ,
  • 董秀梅 ,
  • 章天金 ,
  • 胡兰 ,
  • 江娟
展开
  • 湖北大学材料科学与工程学院铁电压电材料与器件湖北省重点实验室, 武汉 430062

收稿日期: 2007-10-17

  修回日期: 2007-12-21

  网络出版日期: 2008-09-20

Study on the Structure and Photoluminescence of Ho3+-doped BST Films

  • PAN Rui-Kun ,
  • WANG Jun ,
  • DONG Xiu-Mei ,
  • ZHANG Tian-Jin ,
  • HU Lan ,
  • JIANG Juan
Expand
  • Key Laboratory of Ferroelectric & Piezoelectric Materials and Devices of Hubei Province, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China

Received date: 2007-10-17

  Revised date: 2007-12-21

  Online published: 2008-09-20

摘要

采用溶胶-凝胶法制备了1mol%、3mol%、5mol%、8mol% Ho3+掺杂的Ba0.65Sr0.35 TiO3薄膜, 研究了薄膜的表面AFM、XRD谱、光学透射谱和光致发光谱. 结果表明: Ho3+浓度从1mol%增加到8mol%时, BST薄膜的晶格常数先增大后减小; 位于615、650和750nm处的发光, 分别对应5F35F75F55F85S25F45F 的跃迁, 发光谱和5S2, 5F4的寿命谱分析表明, 在Ho3+浓度为3mol%时三个发光带强度均最大. 并分析了Ho3+与Ba2+/Sr2+/Ti4+的离子位置替代机制及交叉弛豫机制.

本文引用格式

潘瑞琨 , 王军 , 董秀梅 , 章天金 , 胡兰 , 江娟 . 掺Ho3+钛酸锶钡薄膜的结构及发光性能研究[J]. 无机材料学报, 2008 , 23(5) : 902 -906 . DOI: 10.3724/SP.J.1077.2008.00902

Abstract

Barium-strontium titanate (Ba0.65Sr0.35TiO3) films doped with Ho3+(1mol%, 3mol%, 5mol%, 8mol%) were prepared by the sol-gel technique. The AFM, XRD, UV-Vis spectra and photoluminescence (PL) spectra of BST films were investigated. Results show that the lattice parameters of BST films increase when Ho3+ dopant increases from 1mol% to 3mol% then decrease with Ho3+ dopant from 3mol% to 8mol%. The lights centered at about 615, 650 and 750nm are corresponding to the transitions of 5F35F7, 5F55F8 and 5S2, 5F45F7, respectively. The lifetime spectra of 5S2, 5F4 and three PL spectra above indicate that the luminescence intensity reach the maximum in 3mol% Ho3+ -doped BST films. The optimized Ho3+ dopant in BST films is 3mol%. The crossing relaxation mechanisms and site-substituting between H 3+ and Ba2+/Sr2+/Ti4+ are analyzed.

参考文献

[1] 刘梅冬, 许毓春. 压电铁电材料与器件. 武汉: 华中理工大学出版社, 1990. 44--154.
[2] 钟维烈, 铁电体物理学. 北京: 科学出版社, 1996.
[3] Hasegawa Y, Wada Y, Yanagida S. Photochemistry and Photobiology C: Photochemistry Reviews, 2004, 5 (3): 183--202.
[4] Pazik R, Hreniak D, Strek W, et al. Optical Materials, 2006, 28 (11): 1284--1288.
[5] Shen Cai, Liu Qian, Liu Qing-Feng. Materials Science and Engineering: B, 2004, 111 (1): 31--35.
[6] Samantaray C B, Nanda Goswami M L, Bhattacharya D, et al. Materials Letters, 2004, 58 (17-18): 2299--2301.
[7] Kim K T, Kim C. Thin Solid Films, 2005, 472 (1-2): 26--30.
[8] Chen M, Liu Z L, Wang Y. Physica B: Condensed Matter, 2004, 352 (1-4): 61--65.
[9] 张思远, 毕宪章. 稀土光谱理论. 吉林科学技术出版社, 1991. 31--66.
[10] Terasako T, Hashimoto K, Nomoto Y, et al. Journal of Luminescence, 2000, 87-89 (1): 1056--1058.
[11] Buddhudu S, Bryant F J, Xi L. Materials Letters, 1990, 9 (2-3): 109--112.
[12] Zaldo C, Martín M., Solé R, et al. Optical Materials, 1998, 10 (1): 29--37.
[13] Wuu D S, Horng R H, Lin C C. et al. Microelectronic Engineering, 2003, 66 (1-4): 600--607.
[14] Li J T, Dong X L. Materials Letters, 2005, 59 (23): 2863--2866.
文章导航

/