研究论文

高介电栅介质材料研究进展

  • 武德起 ,
  • 赵红生 ,
  • 姚金城 ,
  • 张东炎 ,
  • 常爱民
展开
  • 1. 中国科学院新疆理化技术研究所, 乌鲁木齐 830011; 2. 中国科学院北京半导体所, 北京 100038; 3. 中国科学院研究生院, 北京 100049

收稿日期: 2007-10-16

  修回日期: 2007-12-14

  网络出版日期: 2008-09-20

Development of High-K Gate Dielectric Materials

  • WU De-Qi ,
  • ZHAO Hong-Sheng ,
  • YAO Jin-Cheng ,
  • ZHANG Dong-Yan ,
  • CHANG Ai-Min
Expand
  • 1. Xinjiang Technical Institute of Physics & Chemistry, Urumqi 830011, China; 2. Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083, China; 3. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

Received date: 2007-10-16

  Revised date: 2007-12-14

  Online published: 2008-09-20

摘要

传统的栅介质材料SiO2不能满足CMOS晶体管尺度进一步缩小的要求, 因此高介电栅介质材料在近几年得到了广泛的研究, 进展迅速. 本文综述了国内外对高介电材料的研究成果, 并结合作者的工作介绍了高介电栅介质在晶化温度、低介电界面层、介电击穿和金属栅电极等方面的最新研究进展.

本文引用格式

武德起 , 赵红生 , 姚金城 , 张东炎 , 常爱民 . 高介电栅介质材料研究进展[J]. 无机材料学报, 2008 , 23(5) : 865 -871 . DOI: 10.3724/SP.J.1077.2008.00865

Abstract


The traditional gate dielectric material of SiO2 can not satisfy the need of the continuous downscaling of CMOS dimensions. High-K gate dielectric materials have attracted extensive research efforts recently and obtained great progress. In this paper, the developments of high gate materials were reviewed. Based on the authors background and research work in the area, the latest achievements of high-K gate dielectric materials on the recrystalization temperature, the low-K interface layer, and the dielectric breakdown and metal gate electrode were introduced in detail.

参考文献

[1] Chau R, Datta S, Doczy M, et al. IEEE Electron Device Lett., 2004, 25 (6): 408--410.
[2] Lo S H, Bushanan D A, Taur Y, et al. IEEE Electron Device Lett., 1997, 18 (5): 209--211.
[3] Jeong S H, Bae I S, Shin Y S, et al. Thin Solid Films, 2005, 475 (1-2): 354--358.
[4] Spiga S, Wiemer C, Tallarida G, et al. Mater. Sci. and Eng. B, 2004, 109 (1-3): 47--51.
[5] Wolfframma D, Ratzke M, Kappa M, et al. Mater. Sci. and Eng. B, 2004, 109 (1-3): 24--29.
[6] Legrand J, Lhostis S, Chang Y, et al. Microelec. Eng., 2004, 72 (1-4): 310--314.
[7] Liu C Y, Tseng T Y. J. Euro. Ceram. Soc., 2004, 24 (6): 1449--1453.
[8] Albertin K F, Pereyra I, Alayo M I. Materials Characterization. 2003, 50 (2-3): 149--154.
[9] Zhu J, Liu Z G, Zhu M, et al. Appl. Phys. A, 2005, 80 (2): 321--324.
[10] Kim M S, Ko Y D, Hong J H, et al. Appl. Surf. Sci., 2004, 227 (1-4): 387--398.
[11] Wallace R M. Appl. Surf. Sci., 2004, (231-232): 543--551.
[12] Kavalieros J, Doyle B, Datta S, et al. Tri-Gate transistor
architecture with high-k gate dielectrics, metal gates and strain engineering,
Symp. Honolulu, Hawaii. VLSI Tech., 2006. 62--63.
[13] Wallace R M, Wilk G. MRS Bull. 2002, 27 (3): 192--197.
[14] Sahiner M, Woicik J C, Gao P, et al. Thin Solid Films, 2007, 515 (16): 6548--6551.
[15] Hergenrother J M, Wilk G D, Nigam T, et al. (2001) in 50 nm vertical replacement-gate (VRG) nMOSFETs with ALD HfO2 and Al2O3 gate dielectrics. Technical Digest of IEEE International Electron Device Meeting, Washington D.C., 2001, 3.1.1-3.1.4
[16] Sammelselg V, Rammula R, Aarik J, et al. Journal of Electron Spectroscopy and Related Phenomena, 2007, (156-158): 150--154.
[17] Ho M Y, Gong H, Wilk G D, et al. J. Appl. Phys., 2003, 93 (3): 1477--1481.
[18] Zhao X, Vanderbilt D. Phys. Rev. B, 2002, 65 (23): 233106--1--4.
[19] Jiang Y, Song H, Gao J, et al. J. Electrochem. Soc., 2005, 152 (7): C498--C503.
[20] Rauwel E, Dubourdieu C, Holl\ddot{ ander B, et al. Appl. Phys. Lett., 2006, 89 (1): 012902--1--3.
[21] Song S C, Zhang Z, Huffman C, et al. Thin Solid Films., 2006, 504 (1): 170--173.
[22] Zhu W J, Tamagawa T, Gibson M, et al. IEEE Electron Device Lett., 2002, 23 (11): 649--651.
[23] Zhao C, Richard O, Young E, et al. J. Non-Crystalline Solids, 2002, 303 (1): 144--149.
[24] Visokay M R, Chambers J J, Rotondaro A L P, et al. Appl. Phys. Lett., 2002, 80 (17): 3183--3185.
[25] Wong H, Iwai H. Microelectron. Eng., 2006, 83 (10): 1867--1904.
[26] Jeon S, Yang H, Park D G, et al. Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes \& Review Papers., 2002, 41 (4B): 2390--2393.
[27] Lu Y K, Zhu W, Chen X F, et al. Thin Solid Films, 2006, 504 (1-2): 188--191.
[28] Yu H Y, Wu N, Li M F, et al. Appl. Phys. Lett., 2002, 81 (19): 36l8--3620.
[29] Kang J F, Yu H Y, Ren C, et al. Appl. Phys. Lett., 2004, 84 (9): 1588--1590.
[30] Puthenkovilakam R, Sawkar M, Chang J P. Appl. Phys. Lett., 2005, 86 (20): 202902--1--3.
[31] Ogawa A, Iwamoto K, Ota H, et al. Microelec. Eng., 2007, 84 (9-10): 1861--1864.
[32] Mitchell D R G, Aidla A. Appl. Surf. Sci., 2006, 253 (2): 606--617.
[33] Zhu W J, Ma T P, Zafar S, et al. IEEE Electron Device Lett., 2002, 23 (10): 597--599.
[34] Narayanan V, Maitra K, Linder B P, et al. IEEE Electron Device Lett., 2006, 27 (7): 591--594.
[35] Guha S, Paruchuri V K, Copel M, et al. Appl. Phys. Lett., 2007, 90 (9): 092902--1--3.
[36] Alshareef H N, Quevedo-Lopez M, Wen H C, et al. Appl. Phys. Lett., 2006, 89 (23): 232103--1--3.
[37] 张邦维. 微纳电子技术, 2006, 3: 113--120.
[38] 张邦维. 微纳电子技术, 2006, 4: 161--166.
[39] Mcpherson J, Kim J Y, Shanware A, et al. Appl. Phys. Lett., 2003, 82 (13): 2l2l--2l23.
[40] Qi W J, Nieh R, Dharmarajan E, et al. Appl. Phys. Lett., 2000, 77 (11): 1704--1706.
[41] Filipescu M, Scarisoreanu N, Craciun V, et al. Appl. Sur. Sci., 2007, 253 (19): 8184--8191.
[42] Rittersma Z M, Loo J J G P, Ponomarev Y V, et al. J. Electrochem. Soc., 2004, 151 (12): G870--G877.
[43] Peterson J, Young C D, Barnett J, et al. Electrochem. Solid-State Lett, 2004, 7 (8): G164--G167.
[44] Sim J H, Wen H C, Lu J P, et al. IEEE Electron Device Lett., 2003, 24 (10): 631--633.
[45] Schaeffer J K, Samavedam S B, Gilmer D C, et al. J. Vac. Sci. Technol. B, 2003, 21 (1): 11--17.
[46] Pan J, Woo C, Yang C Y, et al. IEEE Electron Device Lett., 2003, 24 (5): 304--305.
[47] Yu H Y, Kang J F, Chi Ren, et al. Chinese Journal of Semiconductors, 2004, 25 (10): 1193--1204.
[48] 英特尔(Intel) 45nm CPU将于今年下半年量产, http://www.semi.org.cn/news/news-show.aspx?id=2796. 2007--12--18.
文章导航

/