研究论文

掺铒 Bi2O3-GeO2-Ga2O3-Na2O玻璃中激发态吸收的抑制

  • 周亚训 ,
  • 王俊 ,
  • 戴世勋 ,
  • 徐铁峰 ,
  • 聂秋华
展开
  • (1.重庆大学光电技术及系统教育部重点实验室, 重庆 400044; 2.宁波大学信息科学与工程学院, 宁波 315211)

收稿日期: 2007-08-24

  修回日期: 2007-10-17

  网络出版日期: 2008-07-20

Suppression of Excited State Absorption in Erbium-doped Bi2O3-GeO2-Ga2O3-Na2O Glasses

  • ZHOU Ya-Xun ,
  • WANG Jun ,
  • DAI Shi-Xun ,
  • XU Tie-Feng ,
  • NIE Qiu-Hua
Expand
  • (1. The Key Laboratory for Optoelectronic Technology & System, Education Ministry of China, Chongqing University, Chongqing 400044, China; 2. College of Information Science and Engineering, Ningbo University, Ningbo 315211, China)

Received date: 2007-08-24

  Revised date: 2007-10-17

  Online published: 2008-07-20

摘要

对应用于1.55μm波段宽带放大的掺Er3+:Bi2O3-GeO2-Ga2O3-Na2O玻璃中激发态吸收的抑制进行了研究. 为此, 在该玻璃中分别引入了Ce3+离子和B2O3组分. 研究表明, 随着玻璃中Ce2O3的掺杂或B2O3组分的引入, Er3+:4I11/2能级与Ce3+:2F5/2能级间的能量传递或Er3+:4I11/24I13/2能级间多声子弛豫速率相应提高, Er 3+离子4I11/2能级荧光寿命显著减小, 激发态吸收得到有效抑制. 同时, 实验发现, Ce2O3的掺杂进一步提高了Er 3+离子4I13/24I15/2能级间总量子效率, 增强了1.55mum波段荧光发射强度, 而荧光发射谱宽基本保持不变. B2O3组分的引入虽在一定程度上削弱了1.55μm波段荧光发射强度, 但进一步拓展了其荧光发射谱, 且增益截面峰值波长移向长波段.

本文引用格式

周亚训 , 王俊 , 戴世勋 , 徐铁峰 , 聂秋华 . 掺铒 Bi2O3-GeO2-Ga2O3-Na2O玻璃中激发态吸收的抑制[J]. 无机材料学报, 2008 , 23(4) : 829 -835 . DOI: 10.3724/SP.J.1077.2008.00829

Abstract

The Ce 3+ ions and B2O3 component were introduced into the Er3+-doped Bi2O3-GeO2-Ga2O3-Na2O glasses, respectively. And the suppression of excited state absorption of Er3+ :4I11/2level was investigated under the excitation of 975nm LD. With the introduction of Ce3+ ion or B2O3 component, the energy transfer between Er3+ :4I11/2 and Ce3+:2F5/2 levels or the multi-phonon relaxation rate of Er3+:4I11/24I13/2 increase, respectively, and the excited state absorption is suppressed efficiently owing to the evident decrease of 4I11/2 level fluorescence lifetime. Meanwhile, the results
show that the total quantum efficiency of Er3+:4I13/24I15/2 is enhanced in the case of Ce3+ ion doping, and the fluorescence intensity of 1.55μm radiative transition is improved accordingly while its effective spectral width is almost
unchanged. In the case of B2O3 component introduction, although the 1.55μm fluorescence intensity is somewhat weakened, its effective spectral width is further broadened and the peak wavelength of gain cross-section shifts to longer wavelength region.

参考文献

[1] 杨建虎, 戴世勋, 戴能利, 等(YANG Jian-Hu, et al). 无机材料学报(Journal of Inorganic Materials), 2003, 18 (4): 751--758.
[2] Wang X S, Nie Q H, Xu T F, et al. J. Opt. Soc. Am. B, 2007, 24 (4): 972--978.
[3] 杨建虎, 戴世勋, 胡丽丽, 等. 中国激光, 2003, 30 (3): 267--270.
[4] Hocde S, Jiang S, Peng X, et al. Opt. Mater., 2004, 25 (2): 149--156.
[5] Shen S X, Richards B, Jha A. Opt. Express, 2006, 14 (12): 5050--5054.
[6] Nandi P, Jose G. Opt. Commun., 2006, 265: 588--593.
[7] Nagamatsu K, Nagaoka S, Higashihata M, et al. Opt. Mater., 2004, 27 (2): 337--342.
[8] Sun H T, Xu S Q, Dai S X, et al. J. Non-Cryst. Solids, 2005, 351 (3): 288--292.
[9] Choi Y G, Kim K H. J. Appl. Phys., 2000, 88 (7): 3832--3839.
[10] Hwa L G, Chang Y R, Szu S P. J. Non-Cryst. Solids, 1998, 231 (3): 222--226.
[11] Shen X, Nie Q H, Xu T F, et al. Spectrochim. Acta Part A, 2007, 66 (2): 389--393.
[12] Miyakawa T, Dexter D L. Phys. Rev. B, 1970, 1 (7): 2961--2969.
[13] Judd B R. Phys. Rev., 1962, 127 (3): 750--761.
[14] Ofelt G S. J. Chem. Phys., 1962, 37 (3): 511--520.
[15] Xu J, Su L B, Li H J, et al. Opt. Mater., 2007, 29 (8): 932--935.
[16] McCumber D E. Phys. Rev., 1964, 134 (2A): A299--A306.
[17] Cho D H, Choi Y G, Kim K H. ETRI J., 2001, 23 (4): 151--157.
文章导航

/