利用脉冲激光淀积(PLD)技术在6H-SiC单晶衬底上制备了ZnO薄膜. 利用X射线衍射(XRD), 反射式高能电子衍射(RHEED)和同步辐射掠入射X射线衍射(SRGID)φ扫描等实验技术研究了ZnO薄膜的结构. 结果表明:在单晶6H-SiC衬底上制备的ZnO薄膜已经达到单晶水平, 不同入射角的SRGID结果, 显示了ZnO薄膜内部不同深度处a方向的晶格弛豫是不一致的, 从接近衬底界面处到薄膜的中间部分再到薄膜的表面处, a方向的晶格常数分别为0.3264、0.3272和0.3223nm. 通过计算得到ZnO薄膜的泊松比为0.504, ZnO薄膜与单晶6H-SiC衬底在平行于衬底表面a轴方向的实际晶格失配度为5.84%.
孙柏
,
李锐鹏
,
赵朝阳
,
徐彭寿
,
张国斌
,
潘国强
,
陈秀芳
,
徐现刚
. 6H-SiC单晶表面ZnO薄膜的制备及其结构表征[J]. 无机材料学报, 2008
, 23(4)
: 753
-757
.
DOI: 10.3724/SP.J.1077.2008.00753
ZnO thin film was prepared on the 6H-SiC single crystal substrate by pulsed laser deposition (PLD) method. X-ray diffraction(XRD), reflection high energy electron diffraction(RHEED) and Phi scan of grazing incidence X-ray diffraction with synchrotron radiation (SRGID) were employed to investigate the structure properties of ZnO thin film. The results show that single crystal ZnO thin film is prepared on 6H-SiC single crystal substrate. The results of SRGID with different grazing incidence angles indicate that the crystal relaxation along the c-axis in ZnO thin film is not uniform. The crystal parameters of a-axis are 0.3264, 0.3272 and 0.3223nm respectively, which correspond to the detected
depth of the interface layers, the middle section and the surface layers of the ZnO film. The calculated results show that the Poisson ratio of ZnO thin film is 0.504 and the lattice mismatch of a-axis between the ZnO thin film and 6H-SiC substrate is 5.84%.
[1] Chang S S, Sakai A. Mater. Lett., 2004, 58 (7-8): 1212--1217.
[2] Naseem S, Yasin S. J. Mater. Sci. Technol., 1997, 13 (6): 499--502.
[3] Bayazitov R M, Khaibullin I B, Batalov R I, et al. Nucl. Instrum. Methods Phys. Res. B, 2003, 206: 984--988.
[4] Wang X, Lu Y M, Shen D Z, et al. Journal of Luminescence, 2007, 122-123: 165--167.
[5] Alivov Ya I, Ozgur U, Dogan S, et al. Superlattices and Microstructures, 2005, 38 (4-6): 439--445.
[6] Alivov Ya I, ddot{ Ozgddot{ ur ddot{ U, Dobreve{ gan S, et al. Appl. Phys. Lett., 2005, 86 (24): 241108.
[7] Ashrafi A B M A, Segawa Y, Shin K, et al. J. Appl. Phys., 2006, 100 (6): 063523.
[8] Makino T, Yasuda T, Segawa Y, et al. Appl. Phys. Lett., 2001, 79 (9): 1282--1284.
[9] 徐现刚, 胡小波, 王继扬, 等. 人工晶体学报, 2003, 32 (5): 540--540.
[10] Brizard C, Rolland G, Laugier F. Journal of Applied Crystallography, 1993, 26 (4): 570--573.
[11] Cheung J T, Gergis I, James M, et al. Appl. Phys. Lett., 1992, 60 (25): 3180--3182.
[12] Zhang B P, Wakatsuki K, Binh N T. Thin Solid Films, 2004, 449 (1-2): 12--19.
[13] Chen Y F, Bagnall D M, Koh H J. J. Appl. Phys., 1998, 84 (7): 3912--3918.
[14] 姜晓明, 贾全杰, 郑文莉, 等. 高能物理与核物理, 2000, 24 (12): 1185--1190.
[15] Dosch H. Phys. Rev. B, 1987, 35 (5): 2137--2143.
[16] Ashrafi A B M A, Binh N T, Zhang B P. Appl. Phys. Lett., 2004, 84 (15): 2814--2816.