采用简单的涂抹方法, 在衬底上制备了CaBi4Ti4O15涂层; 经不同温度退火和120℃放置处理, 得到了浸润性从超疏水到亲水, 其表面接触角从152.5°到43.6°变化的CaBi4Ti4O15涂层表面; 通过扫描电镜分析,研究了不同退火温度下涂层表面微观结构变化对表面
浸润性的影响. 结果表明: CaBi4Ti4O15涂层表面晶粒和孔洞尺寸变化是导致其表面浸润性从超疏水到亲水变化的主要原因, 而包含纳米颗粒的阶层结构导致亲水CaBi4Ti4O15涂层表面呈现出超疏水性.
CaBi4Ti4O15 coatings were fabricated on Al2O3 substrates with a simple spin coating method. These coatings were annealed at different temperatures and then kept in air at 120℃ for several days. The microstructures of CaBi4Ti4O15 coatings were
studied by using SEM. CaBi4Ti4O15 coatings display distinct wettability from superhydrophobicity to hydrophilicity, the
corresponding surface contact angles change from 152.5° to 43.6°. The SEM observation indicates the size change of crystal grains and cavities of rough surfaces is the main reason why the wettability of CaBi4Ti4O15 coatings changes from superhydrophobicity to hydrophilicity, and the intrinsically hydrophilic material performs non-wetting due to rough hierarchical structure with nano-particles.
[1] Barthlott W, Neinhuis C. Planta, 1997. 202 (1): 1-8.
[2] Gao X F, Jiang L. Nature, 2004, 432 (4): 36.
[3] Oner D, McCarthy T J. Langmuir, 2000, 16 (20): 7777-7782.
[4] Feng L, Li S H, Jiang L, et al. Angew. Chem. Int. Ed., 2002, 41 (7): 1221-1223.
[5] Tadanaga K, Kitamuro K, Minami T, et al. Chem. Lett., 2000, 29 (8): 864-865.
[6] 李欢军, 王贤宝, 江 雷, 等. 高等学校化学学报, 2001, 22 (5): 759-761.
[7] 钱柏太, 沈自求(QIAN Bai-Tai, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (3): 747-752.
[8] Sun T L, Wang G J, Jiang L, et al. Angew. Chem. Int. Ed., 2004, 43 (3): 357-360.
[9] Feng X J, Feng L, Jiang L, et al. J. Am. Chem. Soc., 2004, 126 (1): 62-63.
[10] Xu L B, Chen W, Yan Y S, et al. Angew. Chem. Int. Ed., 2005, 44 (37): 6009-6012.
[11] Zorba V, Persano L, Pisignano D, et al. Nanotechnology, 2006, 17 (13): 3234-3238.
[12] Zhou Y, Wang B, Song X, et al. Appl. Surf. Sci., 2006, 253: 2690-2694.
[13] Herminghaus S. Europhys. Lett., 2000, 52 (2): 165-170.
[14] Xiao W J, Huang Z C, He Z H. Appl. Phys. Lett., 2006, 89 (8): 083101-1-3.