研究论文

溶胶-凝胶制备(Ca0.7Mg0.3)SiO3陶瓷及其微波介电性能

  • 王焕平 ,
  • 徐时清 ,
  • 张启龙 ,
  • 杨辉
展开
  • 1. 中国计量学院材料科学与工程学院, 杭州 310018; 2. 浙江大学材料与化学工程学院, 杭州 310027

收稿日期: 2007-09-03

  修回日期: 2007-10-23

  网络出版日期: 2008-07-20

Synthesis and Microwave Dielectric Properties of (Ca0.7Mg0.3)SiO3 Ceramic by Sol-Gel Process

  • WANG Huan-Ping ,
  • XU Shi-Qing ,
  • ZHANG Qi-Long ,
  • YANG Hui
Expand
  • 1. College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China; 2. College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou 310027, China

Received date: 2007-09-03

  Revised date: 2007-10-23

  Online published: 2008-07-20

摘要

以硝酸钙、硝酸镁、正硅酸乙酯为先驱体, 利用溶胶-凝胶法合成了(Ca0.7Mg0.3)SiO3陶瓷粉体, 研究了不同物相和粒径粉体的烧结特性以及陶瓷的微波介电性能. 结果表明: 干凝胶的煅烧温度低于800℃时, 所得粉体主要为无定型态, 煅烧温度超过900℃后, 晶相大量形成; 当以无定型粉体或900℃煅烧获得的细小粒径粉体为原料时, 均难以获得致密结构的陶瓷; 形成完整的粉体原料晶相以及粒径的增大, 有利于陶瓷体的致密烧结和微波介电性能的提高. 粒径分别为50~100nm以及90~300nm的陶瓷粉体, 在1320℃烧结后均获得良好的微波介电性能, 介电常数εr分别为6.62、6.71, 品质因数Q×f值分别为36962、41842GHz, 谐振频率温度系数τf分别为--48.32×10-6/℃、--49.63×10-6/℃.



本文引用格式

王焕平 , 徐时清 , 张启龙 , 杨辉 . 溶胶-凝胶制备(Ca0.7Mg0.3)SiO3陶瓷及其微波介电性能[J]. 无机材料学报, 2008 , 23(4) : 691 -694 . DOI: 10.3724/SP.J.1077.2008.00691

Abstract

Using Ca(NO3)2·4H2O, Mg(NO3)2·6H2O and Si(OC2H 5)4 as precursors, (Ca0.7Mg0.3)SiO3 powders were prepared by sol-gel method. The crystalline phase, microstructure, sintering characteristic and microwave dielectric properties of (Ca0.7 Mg0.3)SiO3 powders calcined at different temperatures were studied. The results show that the powders calcined at 800℃ are almost amorphous and a large amount of crystalline phases are occurred when the calcination temperature increases to 900℃. The dielectric ceramics made from amorphous powders or fine powders (calcined at 900℃) can’t achieve compact structure, and the sintering characteristic and microwave dielectric properties can be enhanced by increasing the size of grains. Using (Ca0.7 Mg0. 3)SiO3 powders with grain sizes of 50--100nm and 90--300nm as raw materials, the ceramics sintered at 1320℃ possess good microwave dielectric properties: ε=6.62, Q× f=36962GHz, τf=-48.32×10-6-1 and ε=6.71, Q× f=41842GHz, τf=-49.63×10-6-1, respectively.



参考文献

[1] Xu Y B. Journal of the American Ceramic Society, 2000, 83 (11): 2893--2897.
[2] 张启龙, 王焕平, 杨辉(ZHANG Qi-Long, et al). 无机化学学报(Chin. J. Inorg. Chem.), 2006, 22 (9): 1657--1662.
[3] Cho S Y, Youn H J, Hong K S, et al. Journal of Materials Research, 1997, 12 (6): 1558--1562.
[4] Ho Y S, Weng M H, Dai B T, et al. Japanese Journal of Applied Physics, 2005, 44 (8): 6152--6156.
[5] Xiong Z X, Huang J R, Fang C, et al. Journal of the European Ceramic Society, 2003, 23(14): 2515--2519.
[6] Hirano S, Hayashi T, Hattori A. Journal of the American Ceramic Society, 1991, 74 (6): 1320--1324.
[7] Katayama S, Sekine M. Journal of Materials Chemistry, 1992, 2 (8): 889--894.
[8] Katayama S, Yoshinaga I, Yamada N, et al. Journal of the American Ceramic Society, 1996, 79 (8): 2059--2063.
[9] Cernea M, Chirtop E, Neacsu D, et al. Journal of the American
Ceramic Society, 2002, 85 (2): 499--504.
[10] Huang J R, Xiong Z X, Fang C, et al. Materials Science and Engineering B, 2003, 99 (1--3): 226--229.
[11] Chu L W, Hsiue G H, Lin I N. Journal of the European Ceramic Society, 2006, 26 (10--11): 2081--2085.
[12] 蔡伟, 江涛, 谭小球, 等. 电子元件与材料, 2002, 21 (2): 16--18.
[13] Sreekanth C R P, Nagabhushana B M, Chandrappa G T, et al. Materials
Chemistry and Physics, 2006, 95 (1): 169--175.
[14] Sun H P, Zhang Q L, Yang H, et al. Materials Science and Engineering B, 2007, 138 (1): 46--50.
[15] 王焕平, 张启龙, 杨辉, 等. 物理化学学报, 2007, 23 (4): 609--613.
[16] 王焕平, 张启龙, 杨辉. 化工学报, 2007, 58 (10): 2652--2657.
文章导航

/