研究论文

电泳沉积法制备Ba0.6Sr0.4TiO3厚膜及其电学性能研究

  • 符云飞 ,
  • 樊慧庆 ,
  • 邓永丽 ,
  • 陈晋
展开
  • 西北工业大学材料学院, 凝固技术国家重点实验室, 西安 710072

收稿日期: 2007-08-13

  修回日期: 2007-10-25

  网络出版日期: 2008-07-20

Preparation and Electrical Properties of BST Thick Film Deposited by Electrophoretic Deposition Method

  • FU Yun-Fei ,
  • FAN Hui-Qing ,
  • DENG Yong-Li ,
  • CHEN Jin
Expand
  • State Key Laboratory of Solidification Processing, School of Materials Science
    and Engineering, Northwestern Polytechnical University, Xi’an 710072, China

Received date: 2007-08-13

  Revised date: 2007-10-25

  Online published: 2008-07-20

摘要

采用电泳沉积法在Pt/Ti/SiO2/Si基底上制备了厚度为33μm的Ba0.6Sr0.4TiO3(BST40)厚膜, 研究了其介电调谐特性、漏电流特性和铁电特性. 实验结果表明: 采用水热法制备纳米BST40粒子, 经250MPa高压压制, 950℃热处理后, BST40厚膜可形成完整的立方钙钛矿结构且表面致密、无裂纹. ε-V特性表明, 1kHz时厚膜调谐率可达59.2%. I-V特性表明, 当电压从--25~25V变化时, 漏导电流<100μA/cm2. 测量了在1kHz, 不同温度下厚膜的电滞回线. 在0℃时, 其剩余极化强度为1.06μC/cm2.



本文引用格式

符云飞 , 樊慧庆 , 邓永丽 , 陈晋 . 电泳沉积法制备Ba0.6Sr0.4TiO3厚膜及其电学性能研究[J]. 无机材料学报, 2008 , 23(4) : 687 -690 . DOI: 10.3724/SP.J.1077.2008.00687

Abstract

Ba0.6Sr0.4TiO3 (BST40) thick film with thickness of 33μm was prepared by electrophoretic deposition method on Pt/Ti/SiO2/Si substrate using the BST40 nano powders as precursor. A high pressure treatment process was introduced in order to increase the density and decrease the sintering temperature of the film. The composition and surface morphology of the BST40 thick film were characterized. The ε-V curve of the BST40 thick film was measured. The leakage current density was tested and hysteresis loops of the thick film were measured at different temperatures. The results show that a dense and no crack surface are formed after sintering at 950℃. A tunability of 59.2% is calculated according to the ε-V curve. The leakage current is less than 100μA/cm 2 when the applied voltage shifts from --25V to 25V. The remnant polarization is 1.06μC/cm2 at the temperature of 0℃ and the frequency of 1kHz.



参考文献

[1] 丁爱丽, 唐新桂, 罗维根(DING Ai-Li, et al). 无极材料学报(Journal of Inorganic Materials), 2002, 17 (1): 125--130.
[2] Lee S G, Kim C, Kim J P. J. Korean Phys. Soc., 2003, 42 (4): 532--537.
[3] Sengupta L C, Sengupta S. IEEE. Trans. Ultras. Ferr. Freq. Cont., 1997, 44 (4): 792--797.
[4] Hu T, Jantunen H, Uusimaki A, et al. J. Eur. Ceram. Soc., 2004, 24 (6): 1111--1116.
[5] Guo H L, Gao W, Yoo J. Curr. Appl. Phys., 2004, 4 (2-4): 385--388.
[6] 朱亚彬, 周岳亮, 王淑芳, 等. 低温与超导, 2004, 32 (1): 32--35.
[7] 李风华, 赵升升, 王珏, 等. 低温与超导, 2003, 31 (2): 26--31.
[8] Kiseleva I A, Kotelnikov A R, Martynov K V, et al. Phys. Chem. Minerals, 1994, 21 (6): 392--400.
[9] Nayak M, Tseng Y. Thin Solid Films, 2002, 408 (1-2): 194--199.
[10] 胡立业, 杨传仁, 符春林, 等. 功能材料, 2005, 11 (36): 1704--1706.
[11] 孔庆生. 薄膜电子学, 第二版. 北京: 电子工业出版社, 1994. 49--54.
[12] Pontes F M, Longo E, Leite E R, et al. Thin Solid Films, 2001, 386 (1): 91--98.
[13] Kim J K, Kim S S, Kim W J, et al. Mater. Lett., 2006, 60 (19): 2322--2325.
[14] Kumar A, Manavalan S G. Surf. Coat. Tech., 2005, 198 (1-3): 406--413.
[15] Abdelkefi H, Khemakhem H, Velu G, et al. J. Alloys Comp., 2005, 399 (1-2): 1--6.
文章导航

/