研究论文

水热合成Zn1-xCrxO稀磁半导体晶体

  • 苗鸿雁 ,
  • 李慧勤 ,
  • 谈国强 ,
  • 安百江 ,
  • 魏艳想
展开
  • 1. 陕西科技大学材料科学与工程学院, 西安 710021; 2. 陕西宝光集团股份有限公司, 宝鸡 721304

收稿日期: 2007-08-13

  修回日期: 2007-11-07

  网络出版日期: 2008-07-20

Preparation of Zn1-xCrxO Diluted Magnetic Semiconductor by Hydrothermal Method

  • MIAO Hong-Yan ,
  • LI Hui-Qin ,
  • TAN Guo-Qiang ,
  • AN Bai-Jiang ,
  • WEI Yan-Xiang
Expand
  • 1. School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; 2. Shaanxi
    Baoguang Group. Co., Ltd BaoJi 721304, China

Received date: 2007-08-13

  Revised date: 2007-11-07

  Online published: 2008-07-20

摘要

采用水热法, 以3mol/L NaOH作为矿化剂, 在260℃下, 保温28h进行Cr合金化(x=0.10, 0.15, 0.20, 0.25), 合成Zn1-xCrxO稀磁半导体晶体. 研究了Cr合金化对水热合成Zn1-xCrxO稀磁半导体粉体结构和性能的影响. XRD测试表明, Cr元素进入到ZnO的晶格内, 实现了Cr的合金化, 晶粒尺寸分别为46.5、46.1、50.6和48.9nm. 从FE-SEM可以观察到, x>0.2时, 晶体的形貌从短柱状转变为长柱状. 通过UV/Vis测试可以观察到Cr离子的吸收, ZnO的禁带宽度依次降低为3.17、3.18、3.19和3.23eV. VSM测试表明, 所制备的Zn1-xCrxO纳米晶体在室温下均表现出弱顺磁性.

本文引用格式

苗鸿雁 , 李慧勤 , 谈国强 , 安百江 , 魏艳想 . 水热合成Zn1-xCrxO稀磁半导体晶体[J]. 无机材料学报, 2008 , 23(4) : 673 -676 . DOI: 10.3724/SP.J.1077.2008.00673

Abstract

Zn1-xCrxO diluted magnetic semiconductors were synthesized by hydrothermal method at 260℃ for about 28h with different concentrations of Cr (x=0.1, 0.15, 0.2 and 0.25), NaOH with concentration of 3mol/L were used as the mineralizer. X-ray diffraction patterns indicate
that as-prepared Cr-alloyed ZnO has the wurtzite structure with Zn2+ partially substituted by Cr3+ , and the average crystallite size of Zn1-xCrxO are 46.5, 46.1, 50.6 and 48.9nm, respectively. FE-SEM analyses show that the structure of nanopowders changes from short stylolitic structure to long stylolitic structrue when Cr concentration x increases to 0.2. The absorption peaks of Cr-doped nanopowders are demonstrated by UV-Vis analysis, and E_g of ZnO are 3.17, 3.18, 3.19 and 3.23eV, respectively. Room temperature VSM reveals a weakly paramagnetism behavior of the as-prepared Zn1-xCrxO nanocrystalline.


参考文献

[1] Dietl T, Ohno H, Matsukura F, et al. Science, 2000, 287 (2): 1019--1022.
[2] Ando K, Saito H, Zheng W J, et al. J. Appl. Phys., 2001, 89 (6): 7284-7287.
[3] Kazunori Sato, Hiroshi Katayama-Yoshida. Jpn. J. Appl. Phys., Part2, 2000, 39 (6): L555--L558.
[4] Ando K, Saito H, Zhengwu Jin, et al. J. Appl. Phys., 2001, 89 (6): 7284--7287.
[5] Xorton D P, Overberg M E, Pearton S T, et al. Appl. Phys. Lett., 2003, 83 (12): 5488--5490.
[6] Chang Y Q, Wu Y N, Wang M W, et al. J. Cryst. Growth., 2006, 289 (1): 183--187.
[7] Roy V A. L, Djuri iA. B, Liu H, et al. Appl. Phys. Lett., 2004, 84 (2): 756--758.
[8] Mariana Diaconu, Heidemarie Schmidt, Andreas Poppl, et al. Superlattices Microstruct., 2005, 38 (9): 413--420.
[9] Santi Maensiri, Jakkapon Sreesongmuang, Chunpen Thomas, et al. J. Magn. Magn. Mater., 2006, 301 (8): 422--432.
[10] Jung S W, An S J, Yi Gyu-Chul, et al. Appl. Phys. Lett., 2002, 80 (6): 4561--4563.
[11] Ahn Geun Young, Park Seung-Iel, Kim Sam Jin, et al. J. Magn. Magn. Mater., 2006, 304 (3): e498--e500.
[12] Colis S, Bieber H, Begin-Colin S, et al. Chem. Phys. Lett., 2006, 422 (3): 529--533.
[13] Paul Joseph D, Naveenkumar S, Sivakumar N, et al. Mater. Chem. Phys., 2006, 97 (10): 188--192.
[14] 史启祯, 编著. 无机化学与化学分析, 第1版. 北京: 高等教育出版社, 1998.
文章导航

/