研究论文

TiO2负载锶铁氧体磁性材料光催化性能及表征

  • 储金宇 ,
  • 于琦 ,
  • 吴春笃 ,
  • 曹常乐 ,
  • 李宁
展开
  • 江苏大学环境学院, 镇江 212013

收稿日期: 2007-09-06

  修回日期: 2007-12-14

  网络出版日期: 2008-07-20

Preparation and Characterization of Magnetic Photocatalysts TiO2 Loaded with Strontium Ferrite

  • CHU Jin-Yu ,
  • YU Qi ,
  • WU Chun-Du ,
  • CAO Chang-Le ,
  • LI Ning
Expand
  • School of Environment, Jiangsu University, Zhenjiang 212013, China

Received date: 2007-09-06

  Revised date: 2007-12-14

  Online published: 2008-07-20

摘要

采用溶胶-凝胶法合成了TiO2负载锶铁氧体光催化剂, 通过XRD、TEM、UV-Vis、VSM等方法对催化剂结构进行了表征, 并以高压汞灯为光源, 亚甲基兰为目标降解物, 对其光催化活性进行了研究. 结果表明, TiO2负载锶铁氧体为复合型光催化剂, 负载后的复合光催化剂保持了良好的磁性能; 锶铁氧体的负载拓宽了催化剂的光响应区域, 光吸收带进入可见光区; 在负载量为20%, 催化剂用量1.5g/L条件下, 催化降解亚甲基兰的效率可达99.1%.

本文引用格式

储金宇 , 于琦 , 吴春笃 , 曹常乐 , 李宁 . TiO2负载锶铁氧体磁性材料光催化性能及表征[J]. 无机材料学报, 2008 , 23(4) : 652 -656 . DOI: 10.3724/SP.J.1077.2008.00652

Abstract

The photocatalyst of TiO2 loaded with strontium ferrite were synthesized via sol-gel technology and characterized by X-ray powder diffraction (XRD), electron microscope (TEM), UV-Vis diffused
reflectance spectroscope (DRS) and vibrating sample magnetometer(VSM). The photocatalytic activities of the samples were evaluated by decolorization of methylene blue(MB) under UV irradiation. The results indicate that the TiO2 loaded strontium ferrite photocatalyst is responsive to the visible light region according to DRS analysis. It is also found that the composite has good magnetic property. About 99.1% MB can be removed at the catalyst dosage of 1.5g/L under UV irradiation for 300 min, when the catalyst is loaded with 20% strontium ferrite.

参考文献

[1] Serpone N. Solar Energy Mater Solar Cells, 1995, 38 (3): 369--379.
[2] Sodergren S, Hagfeldt A, Olsson J, et al. Journal of Physical Chemistry, 1994, 98 (21): 5552--5556.
[3] Kang M, Hong W J, Park M S. Applied Catalysis B: Environmental, 2004, 53 (3): 195--205.
[4] Li X S, Fryxell G E, Engelhard M H, et al. Inorganic Chemistry Communications, 2007, 10 (6): 639--641.
[5] Bideau M, Claudel B, Dubien C, et al. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 91 (2): 137--144.
[6] Mazzarino I, Piccinini P, Spinelli L. Catalysis Today, 1999, 48 (4): 315--321. [7] Beydoun D, Amal R. Materials Science and Engineering, 2002, 94 (1): 71--81.
[8] Watson S, Beydoun D, Amal R. Journal of Photochemistry and Photobiology, 2002, 148 (3): 303--313.
[9] Fu W Y, Yang H B, Li M H, et al. Materials Letters, 2005, 59 (27): 3530--3534.
[10] Beydoun D, Amal R, Low G, et al. Journal of Molecular Catalysis A: Chemical, 2002, 180 (2): 193--200.
[11] Rana S, Srivastava R S, Sorensson M M, et al. Materials Science and Engineering, 2005, 119 (2): 144--151.
[12] Xu S H, Shangguan W F, Yuan J, et al. Science and Technology of Advanced Materials, 2007, 8 (1-2): 40--46.
[13] Cheng P, Li W, Zhou T L, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 168 (1-2): 97--101.
[14] Yuan Z H, You W, Jia J H, et al. Chinese Physics Letters, 1998, 15 (7): 535--536.
[15] Liu J J, Lu G X, He H L, et al. Mater. Res. Bull., 1996, 31 (9): 1049--1056.
[16] 袁志好, 孙永昌, 王玉红, 等. 高等学校化学学报, 2004, 25 (10): 1875--1878.
[17] 廖振华, 陈建军, 姚可夫, 等(LIAO Zhen-Hun, et al). 无
机材料学报(Journal of Inorganic Materials), 2004, 19 (4): 749--754.
[18] 尹京花, 赵莲花, 武伦鹏, 等. 分子催化, 2006, 20 (6): 569--573.
文章导航

/