研究论文

多壁碳纳米管对SiO电极电化学性能的影响

  • 赵薇 ,
  • 黄可龙 ,
  • 刘素琴
展开
  • 中南大学化学化工学院, 长沙 410083

收稿日期: 2007-07-10

  修回日期: 2007-09-19

  网络出版日期: 2008-05-20

Effects of MWNTs on Electrochemical Performance of SiO Electrode

  • ZHAO Wei ,
  • HUANG Ke-Long ,
  • LIU Su-Qin
Expand
  • College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, China

Received date: 2007-07-10

  Revised date: 2007-09-19

  Online published: 2008-05-20

摘要

以多壁碳纳米管(MWNTs)作负极材料导电剂制备了SiO/MWNTs复合电极. 采用恒流充放电测试对比考察了不同含量及类型的导电剂对SiO电极电化学性能的影响. 乙炔黑(AB)的SiO电极首次可逆比容量仅为582.3mAh·g-1, 而20%MWNTs的电极比容量高达1463.9mAh·g-1, 且SiO的循环性能得到显著改善. SEM、EIS测试结果表明: 多次循环后SiO/MWNTs电极仍能较好地保持活性颗粒的导电网络, 而脆性乙炔黑所形成的桥连作用遭到破坏, 导致活性颗粒间的接触电阻增大.

本文引用格式

赵薇 , 黄可龙 , 刘素琴 . 多壁碳纳米管对SiO电极电化学性能的影响[J]. 无机材料学报, 2008 , 23(3) : 578 -582 . DOI: 10.3724/SP.J.1077.2008.00578

Abstract

SiO/MWNTs anode was prepared by mixing SiO particles with Multi-Walled carbon nanotubes as conductive agent.
The galvanostatic charge-discharge cycling was used to investigate the effects of the type and contents of conducting agents on the electrochemical performances of SiO electrode. The results indicate that the electrochemical performance of SiO is improved obviously by adding MWNTs. The SiO/(20%)MWNTs composite anode shows an initial specific reversible capacity of 1463.9mAh·g-1, much higher than 582.3mAh·g-1 for SiO/(20%)AB. The results of SEM and EIS confirm that the excellent cycle performance is attribute to the perfect flexibility and good electric conductivity of MWNTs network, while SiO/AB has larger interparticle contact resistance, which is resulted from the crumbling and conduction network breakage.

参考文献

[1] Idota Y, Kubota T, Matsufuji A, et al. Science, 1997, 276 (5317): 1395--1397.
[2] Idota Y, Mineo Y, Matsufuji A, et al. Denki Kagakuoyobi Kogyo Butsuri Kagaku, 1997, 65 (9): 717--719.
[3] Morimoto H, Tatsumisago M, Minami T. Electrochem. Solid-State Lett., 2001, 4 (2): A16--A18.
[4] Dimov N, Fukuda K, Umeno T, et al. J. Power Sources, 2005, 147 (1-2): 227--233.
[5] Hatchard T D, Dahn J R. J. Electrochem. Soc., 2004, 151 (10): A1628--A1635.
[6] 王力臻, 王树新, 谷书华, 等. 电源技术, 2006, 30 (8): 641--644.
[7] Shu J, Li H, Yang R, et al. Electrochem. Commun., 2006, 8 (1): 51--54.
[8] Li X L, Kang F Y, Shen W C. Carbon, 2006, 44 (7): 1334--1336.
[9] Kyuyun S, Young H L, Hong S L. J. Power Sources, 2006, 158 (2): 1425--1430.
[10] 王国平, 张庆堂, 瞿美臻, 等. 应用化学, 2006, 23 (12): 1385--1390.
[11] Winter M, Besenhard J O, Spahr M E, et al. Adv. Mater., 1998, 10 (10): 725--763.
[12] Eom J Y, Park J W, Kwom H S, et al. J. Electrochemical Society, 2006, 153 (9): A1678--A1684.
[13] LIU Wei-Ren, GUO Zheng-Zao, YOUNG Wen-Shiue, et al. J. Power Sources, 2005, 140 (1): 139--144.
[14] Guo Z P, Zhao Z W, Liu H K, et al. Carbon, 2005, 43 (11): 1392--1399.
文章导航

/