研究论文

分子束外延PbTe/Cd 0.98 Zn 0.02 Te异系材料的微结构特性研究

  • 斯剑霄 ,
  • 吴惠桢 ,
  • 徐天宁 ,
  • 夏明龙 ,
  • 王擎雷 ,
  • 陆叶青 ,
  • 方维政 ,
  • 戴宁
展开
  • 1. 浙江大学物理系, 杭州 310027; 2. 中国科学院上海技术物理研究所, 上海 200083

收稿日期: 2007-06-19

  修回日期: 2007-08-29

  网络出版日期: 2008-05-20

Study on Micro-structural Properties of PbTe/Cd 0.98 Zn 0.02 Te (111)Hetero-system Grown by Molecular-beam Epitaxy

  • SI Jian-Xiao ,
  • WU Hui-Zhen ,
  • XU Tian-Ning ,
  • XIA Ming-Long ,
  • WANG Qing-Lei ,
  • LU Ye-Qing ,
  • FANG Wei-Zheng ,
  • DAI Ning
Expand
  • 1. Department of Physics, Zhejiang University, Hangzhou 310027, China;

    2. Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

Received date: 2007-06-19

  Revised date: 2007-08-29

  Online published: 2008-05-20

摘要

采用分子束外延方法在II-VI族Cd 0.98 Zn 0.02 Te(111)衬底上实现了异系IV-VI族半导体(PbTe)的外延生长. 原子力显微镜(AFM)的表面形貌表征表明, PbTe表面形貌主要由三角形台阶线和螺旋形台阶面构成; 理论计算表明, 螺旋形台阶面的分布受到滑移位错弹性应变能的影响. 通过高分辨透射电镜(HRTEM)观察, 发现在PbTe和Cd 0.98 Zn 0.02 Te界面处存在Frank位错. 分析表明, 这些Frank位错在运动过程中会形成不同的位错组态, 位错组态的相互作用是表面上形成三角形台阶线和螺旋形台阶面的主要原因.

本文引用格式

斯剑霄 , 吴惠桢 , 徐天宁 , 夏明龙 , 王擎雷 , 陆叶青 , 方维政 , 戴宁 . 分子束外延PbTe/Cd 0.98 Zn 0.02 Te异系材料的微结构特性研究[J]. 无机材料学报, 2008 , 23(3) : 545 -548 . DOI: 10.3724/SP.J.1077.2008.00545

Abstract

The surface structure of PbTe epitaxial layers on Cd 0.98 Zn 0.02 Te (111) grown by molecular beam epitaxy was studied by atomic force microscope. It is shown that the surface is dominated by terraces with triangular shape and anomalous spiral steps. In order to clarify the origin of the triangular shape and spiral steps, PbTe/Cd 0.98 Zn 0.02 Te heteroepitaxial layers were investigated by using a high-resolution transmission electron microscope (HRTEM). As a result, it is confirmed that the triangular shape and spiral steps originate from the intrinsic Frank dislocations represented in PbTe/Cd 0.98 Zn 0.02 Te interface. Considering the effect of the kinetics of dislocations, it is
revealed that the strain field arising from dislocations affects the formation of spiral steps. The experiments data are in agreement with the calculations based on elasticity theory and dislocation gliding theory.

参考文献

[1] Kazuto Koike, Takayoshi Honden, Isao Makabe, et al. Journal of Crystal Growth, 2003, 257 (2): 212--217.
[2] 曹春芳, 吴惠桢, 斯剑霄, 等. 物理学报, 2006, 55 (4): 2021--2025.
[3] Springholz G, Ueta A Y, Frank N, et al. Appl. Phys. Lett., 1998, 69 (19): 2822--2824.
[4] Zogg H, Maissen C, Blunier S, et al. Semicond. Sci. Technol., 1993, 8 (3): S337--S341.
[5] Heiss W, Grosiss H, Kaufmann E, et al. Appl. Phys. Lett., 2006, 88 (19): 192109--192111.
[6] Springholz G, Frank N,Bauer G. Thin solid films, 1995, 267 (1): 15--23.
[7] Blunier S, Zogg H, Maissen C, et al. Phys. Rev. Lett., 1992, 68 (24): 3599--3602.
[8] Hannon J B, Shenoy V B, Schwarz K W. Science, 2006, 313 (5791): 1266--1629.
[9] 杨顺华. 晶体位错理论基础(第一卷). 北京: 科学出版社, 1998. 68, 394.
[10] Springholz G. Appl. Sur. Sci., 1997, 112 (1): 12--22.
文章导航

/