研究论文

脉冲激光沉积法生长In掺杂SrTiO3薄膜及其微观结构研究

  • 张亦文 ,
  • 李效民 ,
  • 赵俊亮 ,
  • 于伟东 ,
  • 高相东 ,
  • 吴 峰
展开
  • (1. 中国科学院上海硅酸盐研究所高性能陶瓷和超微结构国家重点实验室, 上海 200050; 2. 中国科学院研究生院, 北京 100049)

收稿日期: 2007-05-25

  修回日期: 2007-07-13

  网络出版日期: 2008-05-20

Growth and Structural Properties of Indium doped SrTiO3 Films by Pulsed Laser Deposition

  • ZHANG Yi-Wen ,
  • LI Xiao-Min ,
  • ZHAO Jun-Liang ,
  • YU Wei-Dong ,
  • GAO Xiang-Dong ,
  • WU Feng
Expand
  • (1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China)

Received date: 2007-05-25

  Revised date: 2007-07-13

  Online published: 2008-05-20

摘要

采用脉冲激光沉积(PLD)方法在MgO/TiN/Si(100)衬底上, 生长不同In掺杂量的SrInxTi{1-xO3(x=0、0.1、0.2)薄膜, 研究In掺杂及本征SrTiO3(STO)缓冲层对薄膜结晶性能、表面形貌、生长模式及紫外拉曼光谱特性的影响. 结果表明, In掺杂导致薄膜结晶度降低, 通过引入本征STO缓冲层可有效提高In掺杂STO薄膜的结晶度, 增强薄膜的(200)择优取向性. 然而随In掺杂量的增加, 薄膜表面平均粗糙度增大; 生长模式由层状生长转变为岛状-层状复合模式; 拉曼一次声子振动模式峰强逐渐增强, 说明薄膜的晶体对称性降低.

本文引用格式

张亦文 , 李效民 , 赵俊亮 , 于伟东 , 高相东 , 吴 峰 . 脉冲激光沉积法生长In掺杂SrTiO3薄膜及其微观结构研究[J]. 无机材料学报, 2008 , 23(3) : 531 -534 . DOI: 10.3724/SP.J.1077.2008.00531

Abstract

Undoped and In-doped SrTiO3(STO) films were grown on MgO/TiN/Si(100) substrates by pulsed laser deposition(PLD). The growth mechanism, crystallinity, surface morphology, and UV-Raman spectra of the films were studied. Results indicate that undoped STO films show high quality crystalline structure with highly (200) orientation. With Indium doping, the crystallinity of the STO film deteriorate, the first order Raman peaks increase indicating the breaking of crystal symmetry, and the film growth mode change from the layer-by-layer mode to island-layer mixed one, resulting in the roughening of the film surface. Furthermore, the crystallinity and (200) orientation of In-doped STO film can be enhanced significantly by introducing an undoped STO buffer layer.

参考文献

[1] Cukauskas E J, Kirchoefer S W, DeSisto W J, et al. Appl. Phys. Lett., 1999, 74 (26): 4034-4036.
[2] Yang G Z, Lu H B, Chen F, et al. J. Cryst. Growth, 2001, 227-228: 929-325.
[3] Ott R, Lahl P, Wordenweber R. Appl. Phys. Lett., 2004, 84 (21): 4147-4149.
[4] Kan D, kanda R, Kanemitsu Y, et al. Appl. Phys. Lett., 2006, 88 (19): 191916.
[5] Leitner A C, Rogers T, Price J C, et al. Appl. Phys. Lett., 1998, 72 (23): 3065-3067.
[6] Guo H Z, Liu L F, Fei Y Y, et al. J. Appl. Phys., 2003, 94 (7): 4558-4562.
[7] Tomio Takeshi, Miki Hidejiro, Tabata Hitoshi. J. Appl. Phys., 1994, 76 (10): 5886-5890.
[8] Ramadan W, Ogale S B, Dhar S, et al. J. Appl. Phys., 2006, 99 (4): 043906-1-4.
[9] Wang H H, Chen F, Dai S Y, et al. Appl. Phys. Lett., 2001, 78 (12): 1676-1678.
[10] Shanthi N, Sarma D D. Phys. Rev. B, 1997, 57 (4): 2153-2158.
[11] Higuchi T, Tsukamoto T, Sata N, et al. Phys. Rev. B, 1998, 57 (12): 6978-6983.
[12] 陈同来, 李效民, 张 霞, 等(CHEN Tong-Lai, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (6): 1475-1480.
[13] Chen T L, Li X M, Wu W B, et al. J. Appl. Phys., 2005, 98 (6): 064109-1-4.
[14] Chen T L, Li X M, Dong R, et al. Thin Solid Films, 2005, 488: 98-102.
[15] Hunter D, Lord K, Williams T M, et al. Appl. Phys. Lett., 2006, 89 (9): 092102-1-3.
[16] Hilt Tisinger L, Liu R, Kulik J, et al. J. Vac. Sci. Technol. B, 2003, 21 (1): 53-56.
文章导航

/