研究论文

电泳沉积碳纳米管的微波等离子体改性

  • 秦玉香 ,
  • 胡 明
展开
  • (天津大学电子信息工程学院, 天津 300072)

收稿日期: 2007-06-18

  修回日期: 2007-08-16

  网络出版日期: 2008-05-20

Ar Microwave Plasma Treatment of Carbon Nanotubes Film by Electrophoretic Deposition

  • QIN Yu-Xiang ,
  • HU Ming
Expand
  • (School of Electronic Information Engineering, Tianjin University, Tianjin 300072, China)

Received date: 2007-06-18

  Revised date: 2007-08-16

  Online published: 2008-05-20

摘要

采用电泳法在Si基底上沉积了碳纳米管(CNTs)薄膜, 并利用Ar微波等离子体对CNTs薄膜进行了改性处理, 研究了改性前后CNTs的微观结构和场发射性能. 高分辨透射电子显微镜(HRTEM)和拉曼光谱的表征结果表明, 等离子体改性明显改变了CNTs的微观结构, 形成了大量的管壁结构缺陷、纳米级突起和“针形”尖端; 场发射测试结果表明, CNTs经Ar等离子体改性处理后开启电场较改性前?略有增大, 等离子体改性10min的CNTs薄膜表现出最佳的场发射J-E特性, 阈值电场由改性前的3.12V/μm降低到2.54V/μm, 当电场强度为3.3V/μm时, 场发射电流密度由改性前的18.4mA/cm2增大到60.7mA/cm2. 对Ar微波等离子体改性增强CNTs薄膜场发射性能的机理进行了分析.

本文引用格式

秦玉香 , 胡 明 . 电泳沉积碳纳米管的微波等离子体改性[J]. 无机材料学报, 2008 , 23(3) : 515 -518 . DOI: 10.3724/SP.J.1077.2008.00515

Abstract

The carbon nanotubes (CNTs) film was prepared on Si substrate by electrophoretic deposition (EPD) and treated by Ar microwave plasma. The microstructure and field emission properties of the as-prepared CNTs films before and after treatment were investigated. High-resolution transmission electron microscope (HRTEM) and Raman spectroscope reveal the microstructural changes of CNTs after the plasma treatment as evidence of the appearance of a large amount of structural defects, the sticking with nanometer size and “needle-like” tips. The field emission measurements indicate that the turn on electric field is increased slightly after treatment. The sample treated by Ar plasma for 10min shows the best field emission J-E property. Compared to that of untreated sample, the threshold field of the CNTs film treated for 10min decreases from 3.12V/μm to 2.54V/μm. And after plasma treatment, the emission current density at applied electric field of 3.3V/μm increase from 18.4mA/cm2 to 60.7mA/cm2. The mechanism of variation of field emission properties after plasma treatment is discussed.

参考文献

[1] Sarangi D, Arpaoui I, Bonard J M. Physica B, 2002, 323 (1-4): 165-167.
[2] Jonge N D, Lamy Y, Schoots K, et al. Nature, 2002, 420 (28): 393-395.
[3] de Heer W A, Chatelain A, Ugarte D. Science, 1995, 270 (5239): 1179-1180.
[4] Xie S S, Li W Z, Pan Z W, et al. Journal of Physics and Chemistry of Solids, 2000, 61 (7): 1153-1158.
[5] Choi J H, Choi S H, Han J H, et al. J. Appl. Phys., 2003, 94 (1): 487-490.
[6] Baughman R H, Zakhidov A A, de Heer W A. Science, 2002, 297 (5582): 787-792.
[7] Bonard J M, Kurt R, Klinke C. Chem. Phys. Lett., 2001, 343 (1-2): 21-27.
[8] Baturin A S, Nikolski K N, Knyazev A I. Technical Physics, 2004, 49 (3): 342-344.
[9] Jin F, Liu Y, Day C M, et al. Carbon, 2007, 45 (3): 587-593.
[10] Su C Y, Juang Z Y, Chen Y L, et al. Diamond Relat. Mater., 2007, 16 (4-7): 1393-1397.
[11] Yi W K, Jeong T W, Yu S G, et al. Adv. Mater., 2002, 14 (23): 1464-1468.
[12] Chen Y C, Tsau Y M, Hsieh Y S, et al. Diamond Relat. Mater., 2005, 14 (3-7): 758-762.
[13] Kawashima Y, Katagiri G. Phys. Rev. B, 1999, 59 (1): 62-64.
[14] Kasuya A, Sasaki Y, Saita Y, et al. Phys. Rev. Lett., 1997, 78 (23): 4434-4437.
[15] Li W Z, Zhang H, Wang C Y, et al. Appl. Phys. Lett., 1997, 70 (20): 2684-2686.
[16] Kim W S, Lee J, Jeong T W, et al. Appl. Phys. Lett., 2005, 87 (16): 163112.
[17] Hiura H, Ebessen T W, Fujita J. Nature, 1994, 367 (6453): 148-151.
[18] Obraztsov A N, Volkov A P, Pavlovsky I. Diamond Relat. Mater., 2000, 9 (3-6): 1190-1195.
[19] Obraztsov A N, Pavlovsky I, Volkov A P, et al. J. Vac. Sci. Technol. B, 2000, 18 (2): 1059-1062.
[20] Dean K A, von Allmen P, Chalamala B R, et al. J. Vac. Sci. Technol. B, 1999, 17 (5): 1959-1969.
[21] Zhou G, Duan W, Gu B. Phys. Rev. Lett., 2001, 87 (9): 095504.
文章导航

/